The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology ...This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.展开更多
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st...Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.展开更多
The warm-hot deformation behavior of CF53 steel was studied with hot compression tests at temperature of 1 123-1 273 K and strain rate of 0. 1-20 s^-l. The activation energy for warm-hot deformation is 274. 816 kJ/mol...The warm-hot deformation behavior of CF53 steel was studied with hot compression tests at temperature of 1 123-1 273 K and strain rate of 0. 1-20 s^-l. The activation energy for warm-hot deformation is 274. 816 kJ/mol. The influences of Zener-Hollomon parameter, strain and grain size imposing on the flow stress were ana- lyzed in the temperature range of warm-hot forging. Based on the creep theory and mathematic theory of statistics, mathematical models of flow stress were obtained. The results provide a scientific basis for controlling microstruc- ture of forging process through Zener-Hollomon parameter.展开更多
Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-highstrain-rate deformation was performed by explosive detonation.The as-electroformed and post-deformed micr...Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-highstrain-rate deformation was performed by explosive detonation.The as-electroformed and post-deformed microstructures of electroformed nickel liner of shaped charge were observed by optical metallography(OM),scanning electron microscopy(SEM) and transmission electron microscopy(TEM) and the orientation distribution of the grains was analyzed by electron backscattering pattern(EBSP) technique.Both melting phenomenon in the jet fragment and recovery and recrystallization in the slug after ultra-high-strain-rate deformation were observed.The research evidence shows that dynamic recovery and recrystallization play an important role in ultra-high-strain-rate deformation for electroformed nickel liner of shaped charge with nano-sized grain.展开更多
A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compres...A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.展开更多
This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy gra...This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy grains,is tested with different initial static shear stress ratio(SSR)using a hollow column torsional shear apparatus.The tests find that the saturated Nanjing sand reaches full liquefaction under the superposition of initial static shear stress and cyclic stress for both stress reversal and non-reversal cases.However,it requires a large number of loading cycles to reach full liquefaction if stress reversal does not occur.With increasing the initial static stress,the large deformation of the Nanjing sand should mainly induced by the cyclic liquefaction firstly under a smaller initial shear stress,and then it should be induced by the residual deformation failure.The critical point occurs approximately when the initial shear stress is close to the amplitude of the cyclic shear stress.Meanwhile,it shows that grain angularity increases the liquefaction resistance when the initial static shear stress is zero.A small initial static shear stress causes the larger loss of liquefaction resistance for angular sand than rounded sand.At a high initial SSR,the angular sand is more resistant to the large residual deformation failure than the rounded sand.展开更多
The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The expe...The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The experimental results indicate that the permeability coefficient increases significantly with the increment of granite gravel content, especially in the range of 60%-70%. Thcrc exists a coarse grain content limit defined as 53%-58.5% to reform the permeable granular skeleton. Beyond this limit, the permeable granular skeleton is efficiently formed, and the macro pores between the separate gravels are partially filled, which is the explanation lbr the permeability increase. The investigations indicate the subgrade resistance modulus (ks0, Ev2, and Evd) depends on the granite gravel content, and the resistance modulus increases significantly beyond granite gravel content of 50%. The skeletons of granitc gravel clayey sand mixture change in the long-term deformation objected to the train-induced dynamic load, which involves three main repeated and circular deformation stages. Generally, the long-time deformation is explained as the gravel crushing and filling the internal porous space with crushed gravel fragments. Through these investigations, the C40-G60 or C30-G70 is recommended as an optimum soil mixture for the good permeability and high resistance modulus.展开更多
The most common apparatus used to investigate the load-deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and...The most common apparatus used to investigate the load-deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and a height of 19 mm.However, the dimensions of this kind of apparatus do not meet the requirements of some civil engineering applications like studying load-deformation characteristics of specimens with large-diameter particles such as granular materials or municipal solid waste materials. Therefore, it is decided to design and develop a large-scale oedometer with an internal diameter of 490 mm. The new apparatus provides the possibility to evaluate the load-deformation characteristics of soil specimens with different diameter to height ratios. The designed apparatus is able to measure the coefficient of lateral earth pressure at rest. The details and capabilities of the developed oedometer are provided and discussed. To study the performance and efficiency, a number of consolidation tests were performed on Firoozkoh No. 161 sand using the newly developed large scale oedometer made and also the 50 mm diameter Casagrande oedometer. Benchmark test results show that measured consolidation parameters by large scale oedometer are comparable to values measured by Casagrande type oedometer.展开更多
For 7475 Al alloy,there were micrographs showing filaments or whiskers formation during the separation stage of superplastic elongation.This indicates the presence of liquid phase which accommodates grain boundary sli...For 7475 Al alloy,there were micrographs showing filaments or whiskers formation during the separation stage of superplastic elongation.This indicates the presence of liquid phase which accommodates grain boundary sliding to reach superplasticity.On the other hand,there is no such phenomenon reported regarding Mg alloy in literatures.Scanning electron microscopic(SEM)fractography exceptionally exhibits a mark of grain boundary sliding and its accommodating mechanism of inter-granular liquid phase.Under the testing conditions of 350℃ and 1×10- 4s -1,the initially fine-grained structure(3.7μm)yields 642%superplastic elongation and exhibits fluffy appearance on the fractured surface.For other specimens showing less superplasticity,their fractured surfaces exhibit partial fluffy appearance.展开更多
In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length...In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length parameter is introduced to weaken the discontinuous singularity of governing equations, and an efficient pseudo arc-length numerical method of multiphase compressible flow is proposed. Then the accuracy and adaptive moving mesh property of this algorithm are tested. Finally, the multiphase pseudo arc-length numerical method is applied to the problem of interaction between shock wave and the deformable particle. Through the flow flied change and data analysis of key points, it can be found the complex wave structures are presented after the interactions between the planar incident shock wave and the metal particle, and all these wave interactions lead to the movement and deformation of metal particle, and then the deformed particle will affect the transmitted shock wave back. According to the discussion, the deformation of particle and shock wave propagation in the particle are determined by the shock wave impedance of each medium and shock speed, so the interaction between shock wave and the deformable particle can be studied on the basis of physical properties of explosive mediums.展开更多
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
基金financially supported in part by the National Key Research and Development Program of China(No.2017YFC0602901)。
文摘This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.
基金Project(51271076)supported by the National Natural Science Foundation of China
文摘Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation.
基金The Automobile Industry Science and Tech-nology Development Fund (No3040)
文摘The warm-hot deformation behavior of CF53 steel was studied with hot compression tests at temperature of 1 123-1 273 K and strain rate of 0. 1-20 s^-l. The activation energy for warm-hot deformation is 274. 816 kJ/mol. The influences of Zener-Hollomon parameter, strain and grain size imposing on the flow stress were ana- lyzed in the temperature range of warm-hot forging. Based on the creep theory and mathematic theory of statistics, mathematical models of flow stress were obtained. The results provide a scientific basis for controlling microstruc- ture of forging process through Zener-Hollomon parameter.
基金Project(50671012) supported by the National Natural Science Foundation of China
文摘Nickel liner of shaped charge with nano-sized grains was prepared by electroforming technique and the ultra-highstrain-rate deformation was performed by explosive detonation.The as-electroformed and post-deformed microstructures of electroformed nickel liner of shaped charge were observed by optical metallography(OM),scanning electron microscopy(SEM) and transmission electron microscopy(TEM) and the orientation distribution of the grains was analyzed by electron backscattering pattern(EBSP) technique.Both melting phenomenon in the jet fragment and recovery and recrystallization in the slug after ultra-high-strain-rate deformation were observed.The research evidence shows that dynamic recovery and recrystallization play an important role in ultra-high-strain-rate deformation for electroformed nickel liner of shaped charge with nano-sized grain.
基金Project(50825901)supported by the National Natural Science Foundation for Distinguished Young Scholar of ChinaProject(2009492011)supported by State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China+1 种基金Project(GH200903)supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering(Hohai University),ChinaProject(Y1090151)supported by Natural Science Foundation of Zhejiang Province,China
文摘A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.
基金supported by the National Natural Science Foundation of China(Nos.51778290,51778386)the National Science Fund for Distinguished Young Scholars(No.51725802)the Natural Science Foundation of Jiangsu High School(No.16KJA560001)。
文摘This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy grains,is tested with different initial static shear stress ratio(SSR)using a hollow column torsional shear apparatus.The tests find that the saturated Nanjing sand reaches full liquefaction under the superposition of initial static shear stress and cyclic stress for both stress reversal and non-reversal cases.However,it requires a large number of loading cycles to reach full liquefaction if stress reversal does not occur.With increasing the initial static stress,the large deformation of the Nanjing sand should mainly induced by the cyclic liquefaction firstly under a smaller initial shear stress,and then it should be induced by the residual deformation failure.The critical point occurs approximately when the initial shear stress is close to the amplitude of the cyclic shear stress.Meanwhile,it shows that grain angularity increases the liquefaction resistance when the initial static shear stress is zero.A small initial static shear stress causes the larger loss of liquefaction resistance for angular sand than rounded sand.At a high initial SSR,the angular sand is more resistant to the large residual deformation failure than the rounded sand.
基金Project(51378514)supported by the National Natural Science Foundation of China
文摘The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The experimental results indicate that the permeability coefficient increases significantly with the increment of granite gravel content, especially in the range of 60%-70%. Thcrc exists a coarse grain content limit defined as 53%-58.5% to reform the permeable granular skeleton. Beyond this limit, the permeable granular skeleton is efficiently formed, and the macro pores between the separate gravels are partially filled, which is the explanation lbr the permeability increase. The investigations indicate the subgrade resistance modulus (ks0, Ev2, and Evd) depends on the granite gravel content, and the resistance modulus increases significantly beyond granite gravel content of 50%. The skeletons of granitc gravel clayey sand mixture change in the long-term deformation objected to the train-induced dynamic load, which involves three main repeated and circular deformation stages. Generally, the long-time deformation is explained as the gravel crushing and filling the internal porous space with crushed gravel fragments. Through these investigations, the C40-G60 or C30-G70 is recommended as an optimum soil mixture for the good permeability and high resistance modulus.
基金financial support provided by the Iran University of Science and Technology
文摘The most common apparatus used to investigate the load-deformation parameters of homogeneous fine-grained soils is a Casagrande-type oedometer. A typical Casagrande oedometer cell has an internal diameter of 76 mm and a height of 19 mm.However, the dimensions of this kind of apparatus do not meet the requirements of some civil engineering applications like studying load-deformation characteristics of specimens with large-diameter particles such as granular materials or municipal solid waste materials. Therefore, it is decided to design and develop a large-scale oedometer with an internal diameter of 490 mm. The new apparatus provides the possibility to evaluate the load-deformation characteristics of soil specimens with different diameter to height ratios. The designed apparatus is able to measure the coefficient of lateral earth pressure at rest. The details and capabilities of the developed oedometer are provided and discussed. To study the performance and efficiency, a number of consolidation tests were performed on Firoozkoh No. 161 sand using the newly developed large scale oedometer made and also the 50 mm diameter Casagrande oedometer. Benchmark test results show that measured consolidation parameters by large scale oedometer are comparable to values measured by Casagrande type oedometer.
文摘For 7475 Al alloy,there were micrographs showing filaments or whiskers formation during the separation stage of superplastic elongation.This indicates the presence of liquid phase which accommodates grain boundary sliding to reach superplasticity.On the other hand,there is no such phenomenon reported regarding Mg alloy in literatures.Scanning electron microscopic(SEM)fractography exceptionally exhibits a mark of grain boundary sliding and its accommodating mechanism of inter-granular liquid phase.Under the testing conditions of 350℃ and 1×10- 4s -1,the initially fine-grained structure(3.7μm)yields 642%superplastic elongation and exhibits fluffy appearance on the fractured surface.For other specimens showing less superplasticity,their fractured surfaces exhibit partial fluffy appearance.
基金supported by the National Natural Science Foundation of China(Grant Nos.11390363,11325209 and 11221202)
文摘In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length parameter is introduced to weaken the discontinuous singularity of governing equations, and an efficient pseudo arc-length numerical method of multiphase compressible flow is proposed. Then the accuracy and adaptive moving mesh property of this algorithm are tested. Finally, the multiphase pseudo arc-length numerical method is applied to the problem of interaction between shock wave and the deformable particle. Through the flow flied change and data analysis of key points, it can be found the complex wave structures are presented after the interactions between the planar incident shock wave and the metal particle, and all these wave interactions lead to the movement and deformation of metal particle, and then the deformed particle will affect the transmitted shock wave back. According to the discussion, the deformation of particle and shock wave propagation in the particle are determined by the shock wave impedance of each medium and shock speed, so the interaction between shock wave and the deformable particle can be studied on the basis of physical properties of explosive mediums.