A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during t...A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.展开更多
The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption...The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.展开更多
The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthes...The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthesis conditions. The re- actants diffused from the bulk gas phase to the external surface of the pellet, and then the reactants diffused through the wax inside the pellet and reacted on the internal surface formed along the pore passages of the pellet. On the basis of reaction kinetics and double a-ASF product distribution model, a diffusion and reaction model of catalyst pellet was established. The effects of diffusion and reaction interaction in a catalyst pellet, the bulk temperature, the reaction pressure and the pellet size on the reactivity were further investigated. The relationship between the internal diffusion effectiveness factor of spherical catalyst pellet and the Thiele modulus were also discussed. The bulk temperature and pellet size have significant effects on the reactivity, while the pressure shows only a slight influence on the reactivity. The internal diffusion effectiveness factor decreases with an increasing Thiele modulus.展开更多
In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reporte...In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer.展开更多
基金The National Science Foundation of China(No.2157604921576050)the Fundamental Research Funds for the Central Universities(No.2242014K10025)
文摘A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.
基金Supported by the National S&T Major Project under Grant No.ZX06901
文摘The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.
基金Financial support from the National Basic Research Program of China(973 Program,2010CB736203)
文摘The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthesis conditions. The re- actants diffused from the bulk gas phase to the external surface of the pellet, and then the reactants diffused through the wax inside the pellet and reacted on the internal surface formed along the pore passages of the pellet. On the basis of reaction kinetics and double a-ASF product distribution model, a diffusion and reaction model of catalyst pellet was established. The effects of diffusion and reaction interaction in a catalyst pellet, the bulk temperature, the reaction pressure and the pellet size on the reactivity were further investigated. The relationship between the internal diffusion effectiveness factor of spherical catalyst pellet and the Thiele modulus were also discussed. The bulk temperature and pellet size have significant effects on the reactivity, while the pressure shows only a slight influence on the reactivity. The internal diffusion effectiveness factor decreases with an increasing Thiele modulus.
文摘In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer.