This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows...This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.展开更多
The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d...The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.展开更多
We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel....We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel.By adjusting the amplitude ratio and the phase difference between the two speakers,a plane traveling sound wave field can be achieved in the test section of the tunnel,which we checked by measuring the amplitudes and phases of the sound pressure along the tunnel and by simultaneously measuring the velocity field of the air flow at three different locations in the tunnel.When a liquid droplet was introduced in the test section,the motion of the droplet and the velocity of the air flow around the droplet were recorded by high speed cameras,from which we analyze and obtain the ratio of the velocity amplitudes and the phase difference between the particle motion and the fluid motion.The experimental data confirm the theoretical result from the wave equations in the long-wavelength regime,i.e.,when the particle size is much smaller than the wavelength.Moreover,we showed that in this regime,the theory on particle motion in an unsteady uniform fluid,when the history term is included,also yields the same results that are in agreement with the experimental data and the wave equation.Our result extends the parameter range over which the theory on particle motion in unsteady fluid is checked against experiments,especially to the range of particle-fluid density ratio that is of important practical applications.展开更多
基金supported by theopen fund project of Scientific Alleviation of Disasters and Home Rebuilding(Grant No.DZJK-0814)from the Chinese State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology
文摘This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.
文摘The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.
基金This work was supported partially by the National Natural Science Foundation of China(Grant No.11988102)and by Tsinghua University.
文摘We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel.By adjusting the amplitude ratio and the phase difference between the two speakers,a plane traveling sound wave field can be achieved in the test section of the tunnel,which we checked by measuring the amplitudes and phases of the sound pressure along the tunnel and by simultaneously measuring the velocity field of the air flow at three different locations in the tunnel.When a liquid droplet was introduced in the test section,the motion of the droplet and the velocity of the air flow around the droplet were recorded by high speed cameras,from which we analyze and obtain the ratio of the velocity amplitudes and the phase difference between the particle motion and the fluid motion.The experimental data confirm the theoretical result from the wave equations in the long-wavelength regime,i.e.,when the particle size is much smaller than the wavelength.Moreover,we showed that in this regime,the theory on particle motion in an unsteady uniform fluid,when the history term is included,also yields the same results that are in agreement with the experimental data and the wave equation.Our result extends the parameter range over which the theory on particle motion in unsteady fluid is checked against experiments,especially to the range of particle-fluid density ratio that is of important practical applications.