Nanomedicine has shown good potentials for cancer diagnosis and treatment since the last decades. Among the various nanoparticles exploited for cancer management so far, gold nanomaterials(e.g., spherical gold nanopar...Nanomedicine has shown good potentials for cancer diagnosis and treatment since the last decades. Among the various nanoparticles exploited for cancer management so far, gold nanomaterials(e.g., spherical gold nanoparticles and gold nanorods)were extensively investigated due to their unique chemo-physical properties. We herein summarize the emerging application and discuss the challenges of using gold nanomaterials for therapy of metastatic cancer.展开更多
Particle size, porosity, and the initial phosphorus concentration in sediments are the main factors affecting phosphorus release flux through the sediment-water interface. Sediments can be physically divided to muddy ...Particle size, porosity, and the initial phosphorus concentration in sediments are the main factors affecting phosphorus release flux through the sediment-water interface. Sediments can be physically divided to muddy and sandy matters, and the adsorption-desorption capacity of sediment with phosphorus depends on particle size. According to phosphorus adsorption-desorption experiments, phosphorus sorption capacity of the sediment decreases with the increase of particle dimension. But among the size-similar particles, sediment with a bigger particle size has the larger initial phosphorus release rate. In terms of muddy and sandy sediments, there are inversely proportional relationships between the release rate and the flux. Due to the contact of surface sediment and the overlying water, the release flux from the sediment is either from direct desorption of surface sediment layer or from the diffusion of pore water in the sediment layer, which is mainly determined by sediment particle size and porosity. Generally, static phosphorus release process may include two stages: the first is the initial release. As for coarse particles, phosphorus is desorbed from surface sediment. And for fine particles, phosphorus concentration in water often decreases, mainly from pore water by the molecular diffusion. During the second stage, pore water flows faster in coarse sediment, and phosphorus is easy to desorb from the surface of the particles as diffusion dominates. For the smaller liquid-solid ratio of fine particles and the larger amount of phosphorus adsorption, the release flux from pore water due to diffusion is very small with longer sorption duration.展开更多
基金supported by the National Basic Research Program of China (2013CB932704)the National Natural Science Foundation of China (81373359, 21305047)the Youth Innovation Promotion Association CAS (2014248)
文摘Nanomedicine has shown good potentials for cancer diagnosis and treatment since the last decades. Among the various nanoparticles exploited for cancer management so far, gold nanomaterials(e.g., spherical gold nanoparticles and gold nanorods)were extensively investigated due to their unique chemo-physical properties. We herein summarize the emerging application and discuss the challenges of using gold nanomaterials for therapy of metastatic cancer.
基金supported by the National Natural Science Foundation of China(Grant No.10972134)the State Key Program of National Natural Science of China(Grant No.11032007)The Shanghai Program for Innovative Research Team in Universities is also acknowledged
文摘Particle size, porosity, and the initial phosphorus concentration in sediments are the main factors affecting phosphorus release flux through the sediment-water interface. Sediments can be physically divided to muddy and sandy matters, and the adsorption-desorption capacity of sediment with phosphorus depends on particle size. According to phosphorus adsorption-desorption experiments, phosphorus sorption capacity of the sediment decreases with the increase of particle dimension. But among the size-similar particles, sediment with a bigger particle size has the larger initial phosphorus release rate. In terms of muddy and sandy sediments, there are inversely proportional relationships between the release rate and the flux. Due to the contact of surface sediment and the overlying water, the release flux from the sediment is either from direct desorption of surface sediment layer or from the diffusion of pore water in the sediment layer, which is mainly determined by sediment particle size and porosity. Generally, static phosphorus release process may include two stages: the first is the initial release. As for coarse particles, phosphorus is desorbed from surface sediment. And for fine particles, phosphorus concentration in water often decreases, mainly from pore water by the molecular diffusion. During the second stage, pore water flows faster in coarse sediment, and phosphorus is easy to desorb from the surface of the particles as diffusion dominates. For the smaller liquid-solid ratio of fine particles and the larger amount of phosphorus adsorption, the release flux from pore water due to diffusion is very small with longer sorption duration.