Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary....Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.展开更多
This research on the influence of sediment resuspension on the flux of materials in the margin of the East China Sea showed that the sediment resuspension rates, was 47.40%-79.18% in the surface layers, and 72.75%-96....This research on the influence of sediment resuspension on the flux of materials in the margin of the East China Sea showed that the sediment resuspension rates, was 47.40%-79.18% in the surface layers, and 72.75%-96.96% in the bottom layers.The research confirmed that the Changjiang River runoff and the eddy area upwelling flow near 125°E were two important factors affecting the sediment resuspension in summer; the transformation of DOC to POC through the flocculation in the transitional region (123°-124°E) was also confirmed by comparison of the resuspension rate. The sediment resuspension was shown to be influenced by the seasonal factor, especially in the surface layer.展开更多
Fluxes of particulate organic carbon (POC) were derived from ^210Po/^210Pb disequilibrium during the 4th Chinese National Arctic Research Expedition (CHINARE-4) from July 1 to September 28, 2010. Average residence...Fluxes of particulate organic carbon (POC) were derived from ^210Po/^210Pb disequilibrium during the 4th Chinese National Arctic Research Expedition (CHINARE-4) from July 1 to September 28, 2010. Average residence times of particulate ^210Po in the euphotic zone were -16.00 a to 1.54 a, which are higher than those of dissolved ^210^Po (-6.89 a to -0.70 a). Great excesses of dissolved ^210Po were observed at all stations, with an average 210^Po/^210^Pb ratio of 1.91±0.20, resulting from 210^Pb atmospheric deposition after sea ice melt. POC fluxes from the euphoric zone were estimated by two methods (E and B) in the irreversible scavenging model. Estimated POC fluxes were 945-126 mmol C/(m^2·a)and 1 848-109 mmol C/(m^2·a) by methods E and B, respectively, both decreasing from low to high latitude. The results are comparable to previous works for the same region, indicating efficient biological pumping in the Chukchi Sea. The results can improve understanding of the carbon cycle in the western Arctic Ocean.展开更多
基金supported by the National Basic Research Program of China (No. 2002CB412504)
文摘Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.
文摘This research on the influence of sediment resuspension on the flux of materials in the margin of the East China Sea showed that the sediment resuspension rates, was 47.40%-79.18% in the surface layers, and 72.75%-96.96% in the bottom layers.The research confirmed that the Changjiang River runoff and the eddy area upwelling flow near 125°E were two important factors affecting the sediment resuspension in summer; the transformation of DOC to POC through the flocculation in the transitional region (123°-124°E) was also confirmed by comparison of the resuspension rate. The sediment resuspension was shown to be influenced by the seasonal factor, especially in the surface layer.
基金Supported by the National Natural Science Foundation of China(Nos.41106167,11205094,41230529,41476172,41406221,41476173)the Youth Foundation of State Oceanic Administration(No.2011531)the CHINARE2012-15 for 01-04-02,02-01,and 03-04-02
文摘Fluxes of particulate organic carbon (POC) were derived from ^210Po/^210Pb disequilibrium during the 4th Chinese National Arctic Research Expedition (CHINARE-4) from July 1 to September 28, 2010. Average residence times of particulate ^210Po in the euphotic zone were -16.00 a to 1.54 a, which are higher than those of dissolved ^210^Po (-6.89 a to -0.70 a). Great excesses of dissolved ^210Po were observed at all stations, with an average 210^Po/^210^Pb ratio of 1.91±0.20, resulting from 210^Pb atmospheric deposition after sea ice melt. POC fluxes from the euphoric zone were estimated by two methods (E and B) in the irreversible scavenging model. Estimated POC fluxes were 945-126 mmol C/(m^2·a)and 1 848-109 mmol C/(m^2·a) by methods E and B, respectively, both decreasing from low to high latitude. The results are comparable to previous works for the same region, indicating efficient biological pumping in the Chukchi Sea. The results can improve understanding of the carbon cycle in the western Arctic Ocean.