Grain refinement of superalloy K4169 was achieved by adding refiners into the alloy melt and their effects on the mechanical properties were investigated. The tensile properties at room temperature and 700 ℃ and low ...Grain refinement of superalloy K4169 was achieved by adding refiners into the alloy melt and their effects on the mechanical properties were investigated. The tensile properties at room temperature and 700 ℃ and low cycle fatigue properties at room temperature were compared for both conventional and fine grained test bars. The results indicate that the rupture strength, yield strength, elongation and reduction of area for refined grains are all much superior to those for coarse ones. Whereas the elongation and reduction of area of fine grained samples decrease at 700 ℃. Low cycle fatigue properties of samples with refined grains at room temperature are improved significantly. In addition, the degree of dispersion of low cycle fatigue data of samples with refined grains is diminished.展开更多
The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs d...The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance.展开更多
基金Project(G2000067202) supported by the National Basic Research Program of China
文摘Grain refinement of superalloy K4169 was achieved by adding refiners into the alloy melt and their effects on the mechanical properties were investigated. The tensile properties at room temperature and 700 ℃ and low cycle fatigue properties at room temperature were compared for both conventional and fine grained test bars. The results indicate that the rupture strength, yield strength, elongation and reduction of area for refined grains are all much superior to those for coarse ones. Whereas the elongation and reduction of area of fine grained samples decrease at 700 ℃. Low cycle fatigue properties of samples with refined grains at room temperature are improved significantly. In addition, the degree of dispersion of low cycle fatigue data of samples with refined grains is diminished.
基金Project(2016YFB0301100)supported by the National Key Research and Development Program of ChinaProject(2018CDJDCD0001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance.