期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电磁分离铝熔体中夹杂颗粒运动的模拟计算 被引量:5
1
作者 李明军 翟秀静 +1 位作者 孙中祺 姚广春 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第2期143-145,共3页
根据电磁流体力学 (MHD)的基本理论 ,建立了在采用矩形电磁线圈和工频电源的条件下电磁分离铝熔体中夹杂颗粒的体积力、颗粒运动速度等数学模型·模拟计算结果表明 ,电磁体积力越大 ,分离力越大 ,夹杂颗粒运动速度越快 ;夹杂颗粒的... 根据电磁流体力学 (MHD)的基本理论 ,建立了在采用矩形电磁线圈和工频电源的条件下电磁分离铝熔体中夹杂颗粒的体积力、颗粒运动速度等数学模型·模拟计算结果表明 ,电磁体积力越大 ,分离力越大 ,夹杂颗粒运动速度越快 ;夹杂颗粒的粒径越大 ,颗粒运动速度越快 ;粒径大于 30 μm的夹杂颗粒运动速度较快 ,容易用电磁方法分离 ,粒径小于 10 μm的夹杂颗粒运动速度较慢 ,难分离· 展开更多
关键词 铝熔体 电磁分离 非金属夹杂颗粒 体积力 颗粒运动速度 模拟计算 电磁流体力学
下载PDF
Simulation of Solid Suspension in a Stirred Tank Using CFD-DEM Coupled Approach* 被引量:16
2
作者 邵婷 胡银玉 +2 位作者 王文坦 金涌 程易 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第10期1069-1081,共13页
Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions... Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions of millions of particles with complex interactions with liquid and the rotating impeller. The simulations were satisfactorily validated with experimental data in literature in terms of measured particle velocities in the tank.Influences of operating conditions and physical properties of particles(i.e., particle diameter and density) on the two-phase flow field in the stirred tank involving particle distribution, particle velocity and vortex were studied.The wide distribution of particle angular velocity ranging from 0 to 105r·min 1is revealed. The Magnus force is comparable to the drag force during the particle movement in the tank. The strong particle rotation will generate extra shear force on the particles so that the particle morphology may be affected, especially in the bio-/polymer-product related processes. It can be concluded that the CFD-DEM coupled approach provides a theoretical way to understand the physics of particle movement in micro- to macro-scales in the solid suspension of a stirred tank. 展开更多
关键词 stirred tank solid suspension particle rotation computational fluid dynamics discrete element method
下载PDF
Experimental study on the motion of a spherical particle in a plane traveling sound wave
3
作者 Dongmei Wan Haitao Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第8期58-72,共15页
We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel.... We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel.By adjusting the amplitude ratio and the phase difference between the two speakers,a plane traveling sound wave field can be achieved in the test section of the tunnel,which we checked by measuring the amplitudes and phases of the sound pressure along the tunnel and by simultaneously measuring the velocity field of the air flow at three different locations in the tunnel.When a liquid droplet was introduced in the test section,the motion of the droplet and the velocity of the air flow around the droplet were recorded by high speed cameras,from which we analyze and obtain the ratio of the velocity amplitudes and the phase difference between the particle motion and the fluid motion.The experimental data confirm the theoretical result from the wave equations in the long-wavelength regime,i.e.,when the particle size is much smaller than the wavelength.Moreover,we showed that in this regime,the theory on particle motion in an unsteady uniform fluid,when the history term is included,also yields the same results that are in agreement with the experimental data and the wave equation.Our result extends the parameter range over which the theory on particle motion in unsteady fluid is checked against experiments,especially to the range of particle-fluid density ratio that is of important practical applications. 展开更多
关键词 Multiphase flow Low Reynolds-number flow Acoustic force Particle-fluid interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部