Starch-nanoparticles were synthesized in water-in-oil microemusion at room temperature, and the starch-nanoparticles were coated with poly-L-lysine. The surface of the starch-nanoparticles was combined with fluorescen...Starch-nanoparticles were synthesized in water-in-oil microemusion at room temperature, and the starch-nanoparticles were coated with poly-L-lysine. The surface of the starch-nanoparticles was combined with fluorescence material Ru(bpy)32+·6H2O, and then the particles were characterized via transmission electron microscope. The fluorescence nanoparticles were conjugated with plasmid DNA to form complexes, and then treated with ultrasound and DNase I. pEGAD plasmid DNA-nanoparticle complexes were co-cultured with plant suspension cells of Dioscrea Zigiberensis G H Wright, and treated with ultrasound. The results show that the diameter of the fluorescence starch-nanoparticles is 50-100 nm. DNA-nanoparticle complexes can protect DNA from ultrasound damage as well as from DNase I cleavage. Mediated by ultrasound, pEGAD plasmid DNA-nanoparticle complexes can pierce into the cell wall, cell membrane and nucleus membrane of plant suspension cells. The green fluorescence protein(GFP) gene at a high frequency exceeds 5%. This nano-biomaterial can efficiently solve the problem that exterior genes cannot traverse the plant cell wall easily.展开更多
Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The prese...Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The present study is in an attempt in using the particle paths of the Lagrangian flow field to simulate the spiral arms of Galaxy M51. The Lagrangian flow field is introduced. The initial locations of fluid particles in the space between two concen- tric cylinders are ftrst specified. Then a linear velocity distribution of the fluid particles is used with different an- gle rotations of the particles to obtain the particle paths in the Lagrangian diagram. For simulating the spiral arms of Galaxy M51, the Lagrangian M51 diagram is developed. The particle paths of the Lagrangian M51 diagram agree quite well with the spiral arms of Galaxy M51.展开更多
基金Project(200501) supported the "985" Program of China
文摘Starch-nanoparticles were synthesized in water-in-oil microemusion at room temperature, and the starch-nanoparticles were coated with poly-L-lysine. The surface of the starch-nanoparticles was combined with fluorescence material Ru(bpy)32+·6H2O, and then the particles were characterized via transmission electron microscope. The fluorescence nanoparticles were conjugated with plasmid DNA to form complexes, and then treated with ultrasound and DNase I. pEGAD plasmid DNA-nanoparticle complexes were co-cultured with plant suspension cells of Dioscrea Zigiberensis G H Wright, and treated with ultrasound. The results show that the diameter of the fluorescence starch-nanoparticles is 50-100 nm. DNA-nanoparticle complexes can protect DNA from ultrasound damage as well as from DNase I cleavage. Mediated by ultrasound, pEGAD plasmid DNA-nanoparticle complexes can pierce into the cell wall, cell membrane and nucleus membrane of plant suspension cells. The green fluorescence protein(GFP) gene at a high frequency exceeds 5%. This nano-biomaterial can efficiently solve the problem that exterior genes cannot traverse the plant cell wall easily.
基金the Natural Sciences and Engineering Research Council of Canada
文摘Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The present study is in an attempt in using the particle paths of the Lagrangian flow field to simulate the spiral arms of Galaxy M51. The Lagrangian flow field is introduced. The initial locations of fluid particles in the space between two concen- tric cylinders are ftrst specified. Then a linear velocity distribution of the fluid particles is used with different an- gle rotations of the particles to obtain the particle paths in the Lagrangian diagram. For simulating the spiral arms of Galaxy M51, the Lagrangian M51 diagram is developed. The particle paths of the Lagrangian M51 diagram agree quite well with the spiral arms of Galaxy M51.