This paper proposes an approach for rendering breaking waves out of large-scale of particle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded ...This paper proposes an approach for rendering breaking waves out of large-scale of particle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded to 3D representation by giving motion variation using fractional Brownian motion (fBm). The waterbody surface is reconstructed from the outlines of 2D simulation. The splashing effect is computed according to the properties of the particles. Realistic features of the wave are ren-dered on GPU, including the reflective and refractive effect and the effect of splash. Experiments showed that the proposed method can simulate large scale breaking waves efficiently.展开更多
流感病毒基质蛋白1(matrix protein 1,M1)位于病毒包膜之下,形成一层壳状结构(衣壳),可与病毒的血凝素、神经氨酸酶、包膜和病毒遗传物质发生相互作用,在病毒的组装与复制过程中起着关键作用.不过,除N端有晶体结构外,全长M1蛋白的结构...流感病毒基质蛋白1(matrix protein 1,M1)位于病毒包膜之下,形成一层壳状结构(衣壳),可与病毒的血凝素、神经氨酸酶、包膜和病毒遗传物质发生相互作用,在病毒的组装与复制过程中起着关键作用.不过,除N端有晶体结构外,全长M1蛋白的结构尚未解析.因此,人们对全长M1蛋白如何二聚化、然后多聚化形成病毒衣壳的过程知之甚少.为了解M1蛋白的二聚化机制,首先从M1的N端片段晶体结构出发,用蛋白质结构预测方法获得M1的全长结构模型;其次,对可能的M1二聚体进行分子动力学模拟,分析其二聚化界面的氨基酸,由此发现了一种通过M1蛋白C端片段结合而形成的二聚体;最后,为验证模拟结果,用电镜三维重构方法分析了全长M1二聚体的构象,并提出了M1多聚化的机理模型.展开更多
The effective conductivity (aeff) of solid oxide fuel cell (SOFC) electrode is an important parameter for predicting the ohmic loss in SOFC. This paper investigates the effective conductivity of SOFC electrodes re...The effective conductivity (aeff) of solid oxide fuel cell (SOFC) electrode is an important parameter for predicting the ohmic loss in SOFC. This paper investigates the effective conductivity of SOFC electrodes recon- structed numerically by packing spherical particles in a computational domain, followed by a dilation process to simulate the sintering procedure. The effects of various parameters on the effective conductivity of the electrodes are investigated, including material composition, porosity, particle size and contact angle. Results show that the effective conductivity ratio (aeff/ao) of the computed con- ducting phase is mainly affected by its total volume frac- tion (VF) in electrode (including the porosity). The effective conductivity can be improved by increasing the VF, electrode particle size or the contact angle between electrode particles. Based on the numerical results, the conventional percolation model for the calculation of O'eft is improved by adjusting the Bruggeman factor from 1.5 to 2.7. The results are useful for understanding the microstructure properties of SOFC composite electrode and for subsequent electrode optimization.展开更多
基金Project partly supported by the National Institute of Information andCommunication Technology (NICT), Japan
文摘This paper proposes an approach for rendering breaking waves out of large-scale of particle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded to 3D representation by giving motion variation using fractional Brownian motion (fBm). The waterbody surface is reconstructed from the outlines of 2D simulation. The splashing effect is computed according to the properties of the particles. Realistic features of the wave are ren-dered on GPU, including the reflective and refractive effect and the effect of splash. Experiments showed that the proposed method can simulate large scale breaking waves efficiently.
文摘流感病毒基质蛋白1(matrix protein 1,M1)位于病毒包膜之下,形成一层壳状结构(衣壳),可与病毒的血凝素、神经氨酸酶、包膜和病毒遗传物质发生相互作用,在病毒的组装与复制过程中起着关键作用.不过,除N端有晶体结构外,全长M1蛋白的结构尚未解析.因此,人们对全长M1蛋白如何二聚化、然后多聚化形成病毒衣壳的过程知之甚少.为了解M1蛋白的二聚化机制,首先从M1的N端片段晶体结构出发,用蛋白质结构预测方法获得M1的全长结构模型;其次,对可能的M1二聚体进行分子动力学模拟,分析其二聚化界面的氨基酸,由此发现了一种通过M1蛋白C端片段结合而形成的二聚体;最后,为验证模拟结果,用电镜三维重构方法分析了全长M1二聚体的构象,并提出了M1多聚化的机理模型.
基金supported by a grant from Research Grant CouncilUniversity Grants CommitteeHong Kong SAR(Poly U 152127/14E)
文摘The effective conductivity (aeff) of solid oxide fuel cell (SOFC) electrode is an important parameter for predicting the ohmic loss in SOFC. This paper investigates the effective conductivity of SOFC electrodes recon- structed numerically by packing spherical particles in a computational domain, followed by a dilation process to simulate the sintering procedure. The effects of various parameters on the effective conductivity of the electrodes are investigated, including material composition, porosity, particle size and contact angle. Results show that the effective conductivity ratio (aeff/ao) of the computed con- ducting phase is mainly affected by its total volume frac- tion (VF) in electrode (including the porosity). The effective conductivity can be improved by increasing the VF, electrode particle size or the contact angle between electrode particles. Based on the numerical results, the conventional percolation model for the calculation of O'eft is improved by adjusting the Bruggeman factor from 1.5 to 2.7. The results are useful for understanding the microstructure properties of SOFC composite electrode and for subsequent electrode optimization.