期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进KPCA与SVM的题名分类研究 被引量:4
1
作者 聂黎生 《现代电子技术》 北大核心 2019年第16期108-111,共4页
为了进一步提高期刊论文题名信息分类查准率和查全率,提出一种基于改进KPCA与SVM的知网题名信息分类算法。基于中国知网数据库选取《中文核心期刊要目总览》(2014年版)2017年度31种计算机学科(TP)期刊收录的13401篇论文题名作为实验语料... 为了进一步提高期刊论文题名信息分类查准率和查全率,提出一种基于改进KPCA与SVM的知网题名信息分类算法。基于中国知网数据库选取《中文核心期刊要目总览》(2014年版)2017年度31种计算机学科(TP)期刊收录的13401篇论文题名作为实验语料库,采用改进KPCA算法对数据进行降维和特征提取,将提取的特征数据库作为SVM的输入进行训练和分类。实验结果表明,该方法较以往分类算法能够进一步提高期刊论文题名的分类效果。 展开更多
关键词 题名分类 核主成分分析 数据降维 特征提取 数据挖掘 模式识别
下载PDF
基于词对主题模型的题名信息自动分类方法研究
2
作者 刘爱琴 董婕 梁雅琨 《晋图学刊》 2023年第4期29-38,共10页
从题名抽取关键词,把题名作为基于本体自动分类的文本主体,实现海量科技论文高效、精准地分类,已经成为图书馆事业发展的重要课题。本文利用文本内部词汇的语义关联特性,在高频词和隐含主题两个不同粒度层面,构建了基于BTM模型的题名信... 从题名抽取关键词,把题名作为基于本体自动分类的文本主体,实现海量科技论文高效、精准地分类,已经成为图书馆事业发展的重要课题。本文利用文本内部词汇的语义关联特性,在高频词和隐含主题两个不同粒度层面,构建了基于BTM模型的题名信息自动分类方法:首先从细粒度层面进行词频统计,提取领域高频词;随后从粗粒度层面进行BTM模型分析,得到主题关键词;之后,将两者去重合并获得领域核心词集;最后,利用SVM算法进行文本分类。该方法有效地实现了知识的快速聚类和关联自动分类,为用户提供了满意度更高的知识发现及相关扩展服务。 展开更多
关键词 题名分类 词对主题模型 支持向量机算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部