期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
几何特征与神经网络联合优化的室内三维点云语义分割方法 被引量:2
1
作者 姚萌萌 李晓明 +4 位作者 王伟玺 谢林甫 黄俊杰 黄鸿盛 汤圣君 《测绘通报》 CSCD 北大核心 2023年第5期56-61,共6页
室内三维点云数据精准语义分割是实现深层次室内空间应用的基础。针对现有三维点云数据语义分割方法存在目标不完整和不一致的问题,本文提出了一种几何特征与深度神经网络联合优化的室内三维点云语义分割方法。该方法首先利用深度学习... 室内三维点云数据精准语义分割是实现深层次室内空间应用的基础。针对现有三维点云数据语义分割方法存在目标不完整和不一致的问题,本文提出了一种几何特征与深度神经网络联合优化的室内三维点云语义分割方法。该方法首先利用深度学习实现室内结构信息语义标签的初步提取,然后利用几何与颜色特征的点云分割方法对原始数据进行精确分割,最后利用概率模型将深度学习语义分割结果与几何分割结果进行交叉融合,实现语义分割结果的联合优化。基于开放数据集对本文提出的分割方法进行了精度和有效性验证,分别采用室内场景简单到复杂的三组室内点云数据进行了测试,试验结果表明,本文提出的方法能够有效提升室内三维点云语义分割精度。 展开更多
关键词 神经网络 点云 语义分割 多级平面提取 颜色区域增长分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部