期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的轮胎标识点颜色识别 被引量:1
1
作者 王勇 郭慧 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期520-523,532,共5页
针对人工识别汽车轮胎标识点颜色效率低、误差大的问题,研究了一种基于支持向量机的轮胎标识点颜色识别方法,利用PLC-工业相机图像采集系统获取轮胎标识点图像信息,对获取的标识点图像进行图像降噪、标识点分割、颜色特征向量提取等处理... 针对人工识别汽车轮胎标识点颜色效率低、误差大的问题,研究了一种基于支持向量机的轮胎标识点颜色识别方法,利用PLC-工业相机图像采集系统获取轮胎标识点图像信息,对获取的标识点图像进行图像降噪、标识点分割、颜色特征向量提取等处理,将提取的轮胎标识点颜色特征向量输入到支持向量机颜色分类器中进行颜色识别。实验结果表明,该方法能够有效地识别出轮胎标识点颜色信息。 展开更多
关键词 PLC-工业相机 轮胎标识点 颜色特征向量 支持向量
下载PDF
Soft measurement for component content based on adaptive model of Pr/Nd color features 被引量:5
2
作者 陆荣秀 杨辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1981-1986,共6页
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas... For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction. 展开更多
关键词 Pr/Nd extraction Color feature Component content Adaptive iterative least squares support vector machine Real-time correction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部