期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于竞争学习网络的田间籽棉图像分割 被引量:2
1
作者 王玲 姬长英 +2 位作者 刘善军 陈兵林 王萍 《农业工程学报》 EI CAS CSCD 北大核心 2008年第10期156-160,共5页
为了正确识别田间籽棉,将籽棉和铃壳、绿叶、根茎、土地等自然背景视为二个类别,基于竞争学习网络进行了图像分割。从多幅典型的籽棉图像中选取10000个像素作为训练样本,并为它们贴上类别标签,在HSI、Lab、Ohta、RGB颜色空间下对训练样... 为了正确识别田间籽棉,将籽棉和铃壳、绿叶、根茎、土地等自然背景视为二个类别,基于竞争学习网络进行了图像分割。从多幅典型的籽棉图像中选取10000个像素作为训练样本,并为它们贴上类别标签,在HSI、Lab、Ohta、RGB颜色空间下对训练样本的颜色特征及其组合进行K-均值聚类,选取了误分率普遍较低的RGB颜色空间,其B值的误分率尤其低。在RGB颜色空间下,用训练样本的R、G、B组合或B值一次性地训练了竞争学习网络,将图像的全部像素输入网络进行测试,同时与K-均值聚类比较,形态学滤波去噪后的结果表明,基于B值的竞争学习网络较优,用907幅籽棉图像对其进行仿真的精度达92.94%。该方法结合了有监督的学习算法,避免了传统K-均值聚类的反复迭代和过拟合现象,提高了图像分割的效率和精度。 展开更多
关键词 田间籽棉 图像分割 颜色空间选取 竞争学习网络 形态学滤波
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部