This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the pr...This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.展开更多
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si...It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.展开更多
Gray scale grades for color change of dyed fabrics are assessed via image processing technology.Digital images of groups of specimens are obtained,cropped,and saved as JPEG format.Relationships between gray scale grad...Gray scale grades for color change of dyed fabrics are assessed via image processing technology.Digital images of groups of specimens are obtained,cropped,and saved as JPEG format.Relationships between gray scale grades for color change and the corresponding color differences calculated via image processing technology are investigated,compared with those obtained from high accurate computer color matching system.Results show that the new method is acceptable with an accuracy of 92.0% when the grading errors are of not more than one grade.展开更多
Aiming at the rapid identification of rural buildings in complex environments from high-spatialresolution images, an improved Mahalanobis distance colour segmentation method(IMDCSM) is proposed and realised in Red, Gr...Aiming at the rapid identification of rural buildings in complex environments from high-spatialresolution images, an improved Mahalanobis distance colour segmentation method(IMDCSM) is proposed and realised in Red, Green and Blue(RGB) space. Vector sets of a lower discrete degree are obtained by filtering the colour vector sets of the building samples, and a standard ellipsoid equation can be constructed based on these vector sets. The threshold of interested colour range can be flexibly and intuitively selected by changing the shape and size of this ellipsoid. Then, according to the relationship between the location of the image pixel colour vector and the ellipsoid, all building information can be extracted quickly. To verify the effectiveness of the proposed method, unmanned aerial vehicle(UAV) images of two areas in the suburbs of Chengdu city and Deyang city were utilised as experimental data for image segmentation, and the existing colour segmentation method based on the Mahalanobis distance was selected as an indicator to assess the effectiveness of this method. The experimental results demonstrate that the completeness and correctness of this method reached 95% and 83.0%, respectively, values that are higher than those of the Mahalanobis distance colour segmentation method(MDCSM). In general, this method is suitable for the rapid extraction of rural building information, and provides a new threshold selection method for classification.展开更多
Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the ...Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity, wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm. The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.展开更多
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV col...A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.展开更多
文摘This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.
文摘It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.
基金Scientific Research Fund of Yancheng Institute of Technology,China(No. XKY2009029)
文摘Gray scale grades for color change of dyed fabrics are assessed via image processing technology.Digital images of groups of specimens are obtained,cropped,and saved as JPEG format.Relationships between gray scale grades for color change and the corresponding color differences calculated via image processing technology are investigated,compared with those obtained from high accurate computer color matching system.Results show that the new method is acceptable with an accuracy of 92.0% when the grading errors are of not more than one grade.
基金supported by National Science and Technology Support Project of the 12th Five-Year Plan of China (Grant No.2014BAL01B04)Sichuan Provincial Department of Land and Resources Research Project (Grant No.KJ-2018-13)
文摘Aiming at the rapid identification of rural buildings in complex environments from high-spatialresolution images, an improved Mahalanobis distance colour segmentation method(IMDCSM) is proposed and realised in Red, Green and Blue(RGB) space. Vector sets of a lower discrete degree are obtained by filtering the colour vector sets of the building samples, and a standard ellipsoid equation can be constructed based on these vector sets. The threshold of interested colour range can be flexibly and intuitively selected by changing the shape and size of this ellipsoid. Then, according to the relationship between the location of the image pixel colour vector and the ellipsoid, all building information can be extracted quickly. To verify the effectiveness of the proposed method, unmanned aerial vehicle(UAV) images of two areas in the suburbs of Chengdu city and Deyang city were utilised as experimental data for image segmentation, and the existing colour segmentation method based on the Mahalanobis distance was selected as an indicator to assess the effectiveness of this method. The experimental results demonstrate that the completeness and correctness of this method reached 95% and 83.0%, respectively, values that are higher than those of the Mahalanobis distance colour segmentation method(MDCSM). In general, this method is suitable for the rapid extraction of rural building information, and provides a new threshold selection method for classification.
基金Supported by the National Natural Science Foundation of China (No.60372059) Natural Foundation of Anhui Province (No.03042206).
文摘Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity, wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm. The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.
基金supported by the China Scholarship CouncilPostgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of NUPT(No.NY214039)
文摘A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.