In this paper we propose a finite element(FE) simulation method to predict tree motion in a wind field. Two FE tree models were investigated:One model was generated based on a realistic nature-looking geometric tree m...In this paper we propose a finite element(FE) simulation method to predict tree motion in a wind field. Two FE tree models were investigated:One model was generated based on a realistic nature-looking geometric tree model,and the other was a symmetric model to investigate the influence of asymmetric material properties on tree motion. The vortex-induced vibration(VIV) theory is introduced to estimate the fluctuating wind force being exerted on tree stems and the fluid-structure interaction(FSI) analysis is also included in the simulation. The results indicate that asymmetric material properties result in the crosswind displacement of the investigated node and the main swaying direction deviation. The simulation reveals that under wind loading,a tree with leaves has much larger swaying amplitude along the wind direction and longer swaying period than a tree without leaves. However,the crosswind swaying amplitude is mainly due to branch interaction. The numerical simulation proved that the inter-action of tree branches can prevent dangerous swaying motion developing.展开更多
In the last twenty years, new imaging techniques to assess atrial function and to predict the risk of recurrence of atrial fibrillation after treatment have been developed. The present review deals with the role of th...In the last twenty years, new imaging techniques to assess atrial function and to predict the risk of recurrence of atrial fibrillation after treatment have been developed. The present review deals with the role of these techniques in the detection of structural and functional changes of the atrium and diagnosis of atrial remodeling, particularly atrial fibrosis. Echocardiography allows the detection of anatomical, functional changes and deformation of the atrial wall during the phases of the cardiac cycle. For this, adequate acquisition of atrial images is necessary using speckle tracking imaging and interpretation of the resulting strain and strain rate curves. This allows to predict new-onset atrial fibrillation and recurrences. Its main limitations are inter-observer variability, the existence of different software manufacturers, and the fact that the software used were originally developed for the evaluation of the ventricular function and are now applied to the atria. Cardiac magnetic resonance, using contrast enhancement with gadolinium, plays a key role in the visualization and quantification of atrial fibrosis. This is the established method for in vivo visualization of myocardial fibrotic tissue. The non-invasive evaluation of atrial fibrosis is associ- ated with the risk of recurrence of atrial fibrillation and with electro-anatomical endocardial mapping. We discuss the limitations of these techniques, derived from the difficulty of demonstrating the correlation between fibrosis imaging and histology, and poor intra- and inter- observer reproducibility. The sources of discordance are described, mainly due to image acquisition and processing, and the challenges ahead in an attempt to eliminate differences between operators.展开更多
文摘In this paper we propose a finite element(FE) simulation method to predict tree motion in a wind field. Two FE tree models were investigated:One model was generated based on a realistic nature-looking geometric tree model,and the other was a symmetric model to investigate the influence of asymmetric material properties on tree motion. The vortex-induced vibration(VIV) theory is introduced to estimate the fluctuating wind force being exerted on tree stems and the fluid-structure interaction(FSI) analysis is also included in the simulation. The results indicate that asymmetric material properties result in the crosswind displacement of the investigated node and the main swaying direction deviation. The simulation reveals that under wind loading,a tree with leaves has much larger swaying amplitude along the wind direction and longer swaying period than a tree without leaves. However,the crosswind swaying amplitude is mainly due to branch interaction. The numerical simulation proved that the inter-action of tree branches can prevent dangerous swaying motion developing.
文摘In the last twenty years, new imaging techniques to assess atrial function and to predict the risk of recurrence of atrial fibrillation after treatment have been developed. The present review deals with the role of these techniques in the detection of structural and functional changes of the atrium and diagnosis of atrial remodeling, particularly atrial fibrosis. Echocardiography allows the detection of anatomical, functional changes and deformation of the atrial wall during the phases of the cardiac cycle. For this, adequate acquisition of atrial images is necessary using speckle tracking imaging and interpretation of the resulting strain and strain rate curves. This allows to predict new-onset atrial fibrillation and recurrences. Its main limitations are inter-observer variability, the existence of different software manufacturers, and the fact that the software used were originally developed for the evaluation of the ventricular function and are now applied to the atria. Cardiac magnetic resonance, using contrast enhancement with gadolinium, plays a key role in the visualization and quantification of atrial fibrosis. This is the established method for in vivo visualization of myocardial fibrotic tissue. The non-invasive evaluation of atrial fibrosis is associ- ated with the risk of recurrence of atrial fibrillation and with electro-anatomical endocardial mapping. We discuss the limitations of these techniques, derived from the difficulty of demonstrating the correlation between fibrosis imaging and histology, and poor intra- and inter- observer reproducibility. The sources of discordance are described, mainly due to image acquisition and processing, and the challenges ahead in an attempt to eliminate differences between operators.