Aim To put forward a type of math model for optimizing fan′s twisting law.Methods This math model wu based on turbo-machinery Euler equations and calculus of variation, it was conducted for optimizing the aerodynamic...Aim To put forward a type of math model for optimizing fan′s twisting law.Methods This math model wu based on turbo-machinery Euler equations and calculus of variation, it was conducted for optimizing the aerodynamic parameters along the blade height of the fan, and the math method was produced for the optimization of fan's twisting law. Results The type 6102Q engine cooling fan was optimized by use of this model, and the calculation on data were contrasted with those of iso-reaction coefficiency flow type and free vortex flow type. Some probleme existing in long blade can be solved by use of above method. Conclusion The design parameters needn't be determined artificially, so calculating results are more rational to a high degree than that from other mehods.展开更多
A tool was developed to assist the cooling systems designer in designing and installing the microsprinklers and fan cooling system. The tool was developed by integrating a mathematical model into an electronic spark m...A tool was developed to assist the cooling systems designer in designing and installing the microsprinklers and fan cooling system. The tool was developed by integrating a mathematical model into an electronic spark map in order to use the mathematical model practically. The mathematical model was developed using the designs, parameters, variables, and constant values of the microsprinklers and fans cooling system. Subsequently, an electronic spark map (decision tree) was developed, and then the mathematical model was integrated into the electronic spark map. Afterwards, C# (C Sharp) programming language was used to develop a computer system via the electronic spark map, and to make the user interface. The developed computer system assists the designer in making decisions to specify and to calculate the required discharge of cooling system pump, length and diameter of cooling system pipelines, number of cooling fans, and number of microsprinklers. Moreover, this tool calculates the capital investment and the fixed, variable, and total costs of the cooling system. However, the mathematical model of the spark map requires some input data such as: pressure and discharge of microsprinklers, and some other engineering parameters. Data of 4 cooling systems were used to carry out the model validation. The differences between actual and calculated values were determined, and the standard deviations were calculated. The coefficients of variation were between 2.25% and 4.13%.展开更多
文摘Aim To put forward a type of math model for optimizing fan′s twisting law.Methods This math model wu based on turbo-machinery Euler equations and calculus of variation, it was conducted for optimizing the aerodynamic parameters along the blade height of the fan, and the math method was produced for the optimization of fan's twisting law. Results The type 6102Q engine cooling fan was optimized by use of this model, and the calculation on data were contrasted with those of iso-reaction coefficiency flow type and free vortex flow type. Some probleme existing in long blade can be solved by use of above method. Conclusion The design parameters needn't be determined artificially, so calculating results are more rational to a high degree than that from other mehods.
文摘A tool was developed to assist the cooling systems designer in designing and installing the microsprinklers and fan cooling system. The tool was developed by integrating a mathematical model into an electronic spark map in order to use the mathematical model practically. The mathematical model was developed using the designs, parameters, variables, and constant values of the microsprinklers and fans cooling system. Subsequently, an electronic spark map (decision tree) was developed, and then the mathematical model was integrated into the electronic spark map. Afterwards, C# (C Sharp) programming language was used to develop a computer system via the electronic spark map, and to make the user interface. The developed computer system assists the designer in making decisions to specify and to calculate the required discharge of cooling system pump, length and diameter of cooling system pipelines, number of cooling fans, and number of microsprinklers. Moreover, this tool calculates the capital investment and the fixed, variable, and total costs of the cooling system. However, the mathematical model of the spark map requires some input data such as: pressure and discharge of microsprinklers, and some other engineering parameters. Data of 4 cooling systems were used to carry out the model validation. The differences between actual and calculated values were determined, and the standard deviations were calculated. The coefficients of variation were between 2.25% and 4.13%.