Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in differ...Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) decomposition is applied to the winter wind stress curl and the Kuroshio Current(KC) transport,which are believed to play important roles in forcing the variability of the YSWC surface axis.Statistics shows that the WSI is significantly related with the second EOF mode of the wind stress curl in February,which may force the YSWC surface axis moving westward and maintaining the double warm tongues because of its opposite curl in the YSWC domain.The first EOF mode of wind stress curl in January is propitious for inducing the warm tongue in the YS to advance more northward.Hence,the wind stress curls both in January and in February could force variations of the YSWC surface axis;however,the effect of the January wind stress curl is relatively weaker than that of the February.The relationship between the NEI and the KC transport is remarkable,and it seems that the stronger KC supplies more power to push the YSWC northward against the southward wind.展开更多
The fluctuation characteristics is the inherent property of wind power.Through analysis of a large number of wind t'anns based on measured data,we find it describes the best probability distribution of wind power flu...The fluctuation characteristics is the inherent property of wind power.Through analysis of a large number of wind t'anns based on measured data,we find it describes the best probability distribution of wind power fluctuation for the mixed Gauss distribution of two components,and try to carry out the physical interpretation of two components.Further discussion is between the probability distribution of fluctuating wind power time difference and whole relationship.It is found that the two have basic similarity.Through comparing the different time level data quantified losses the information of wind power fluctuation,quantitative determination of the degree of impact prediction.We can summarize and understand of wind power fluctuation,constructing instance from the wind farm construction and monitoring prediction two aspect recommendations to overcome the adverse effects of wind power fluctuations on the power grid operation.展开更多
The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitiv...The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.展开更多
Many factors such as outer diameter, hub ratio, blade numbers, shape and stagger angle affect the performance of small cooling fans. A small cooling fan was simulated using CFD software for three blade stagger angles ...Many factors such as outer diameter, hub ratio, blade numbers, shape and stagger angle affect the performance of small cooling fans. A small cooling fan was simulated using CFD software for three blade stagger angles (30.5°, 37.5°, 44.5°)and obtained the internal flow field and the static characteristics. Research indicated that the stagger angle has an obvious effect on the static characteristics of a fan. For flow rates below 0.0104 mVs, total pressure is the greatest when the stagger angle is 37.5°; flow rates higher than 0.0104 m^3/s, the total pressure is greatest when the stagger angle is 44.5° For the same flow rates, the velocity at inlet of pressure surface increases with in- creasing stagger angle, but the change of velocity on the suction surface is very small. For one model, vortices and the speed of revolution surfaces decrease with tip clearance increasing. But for other three models, increasing the stagger angle, the vortex intensity and speed of revolution surfaces at same height tip clearance increases, simultaneously, the position of vortex offset from the top of the rotor blade to the suction surface.展开更多
基金Supported by the National Basic Research Program of China (973 Program) (No 2005C B422308)the National High-tech Research and Development Program (863 Program) (No 2006AA09Z149)the China International Science and Technology Cooperation Program (No2006DFB21250)
文摘Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) decomposition is applied to the winter wind stress curl and the Kuroshio Current(KC) transport,which are believed to play important roles in forcing the variability of the YSWC surface axis.Statistics shows that the WSI is significantly related with the second EOF mode of the wind stress curl in February,which may force the YSWC surface axis moving westward and maintaining the double warm tongues because of its opposite curl in the YSWC domain.The first EOF mode of wind stress curl in January is propitious for inducing the warm tongue in the YS to advance more northward.Hence,the wind stress curls both in January and in February could force variations of the YSWC surface axis;however,the effect of the January wind stress curl is relatively weaker than that of the February.The relationship between the NEI and the KC transport is remarkable,and it seems that the stronger KC supplies more power to push the YSWC northward against the southward wind.
文摘The fluctuation characteristics is the inherent property of wind power.Through analysis of a large number of wind t'anns based on measured data,we find it describes the best probability distribution of wind power fluctuation for the mixed Gauss distribution of two components,and try to carry out the physical interpretation of two components.Further discussion is between the probability distribution of fluctuating wind power time difference and whole relationship.It is found that the two have basic similarity.Through comparing the different time level data quantified losses the information of wind power fluctuation,quantitative determination of the degree of impact prediction.We can summarize and understand of wind power fluctuation,constructing instance from the wind farm construction and monitoring prediction two aspect recommendations to overcome the adverse effects of wind power fluctuations on the power grid operation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50976117 and 50836006)
文摘The roughness increase on horizontal axis wind turbine(HAWT) blade surface,especially on the leading edge,can lead to an aerodynamic performance degradation of blade and power output loss of HAWT,so roughness sensitivity is an important factor for the HAWT blade design.However,there is no criterion for evaluating roughness sensitivity of blade currently.In this paper,the performance influences of airfoil aerodynamic parameters were analyzed by the blade element momentum(BEM) method and 1.5 MW wind turbine blade.It showed that airfoil lift coefficient was the key parameter to the power output and axial thrust of HAWT.Moreover,the evaluation indicators of roughness sensitivity for the different spanwise airfoils of the pitch-regulated HAWT blade were proposed.Those respectively were the lift-to-drag ratio and lift coefficient without feedback system,the maximum lift-to-drag ratio and design lift coefficient with feedback system for the airfoils at outboard section of blade,and lift coefficient without feedback,maximum lift coefficient with feedback for the airfoils at other sections under the pitch-fixed and variable-speed operation.It is not necessary to consider the roughness when HWAT can be regulated to the rated power output by the pitch-regulated and invariable-speed operation.
基金support of Zhejiang Provincial Natural Science Foundation (No.R107635)Zhejiang Provincial Key Science Foundation (2008 C11027)National Natural Science Foundation of China (No.50735004)
文摘Many factors such as outer diameter, hub ratio, blade numbers, shape and stagger angle affect the performance of small cooling fans. A small cooling fan was simulated using CFD software for three blade stagger angles (30.5°, 37.5°, 44.5°)and obtained the internal flow field and the static characteristics. Research indicated that the stagger angle has an obvious effect on the static characteristics of a fan. For flow rates below 0.0104 mVs, total pressure is the greatest when the stagger angle is 37.5°; flow rates higher than 0.0104 m^3/s, the total pressure is greatest when the stagger angle is 44.5° For the same flow rates, the velocity at inlet of pressure surface increases with in- creasing stagger angle, but the change of velocity on the suction surface is very small. For one model, vortices and the speed of revolution surfaces decrease with tip clearance increasing. But for other three models, increasing the stagger angle, the vortex intensity and speed of revolution surfaces at same height tip clearance increases, simultaneously, the position of vortex offset from the top of the rotor blade to the suction surface.