期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
风力机叶片模型气动载荷的仿真与实验 被引量:1
1
作者 赵丹平 田德 +1 位作者 韦丽珍 王海宽 《东北林业大学学报》 CAS CSCD 北大核心 2009年第12期124-125,131,共3页
基于ANSYS软件的有限元法,对旋转中的1.5MW风力机叶片模型在不同风速下运行时,进行气动载荷分析及仿真模拟;用车载法对叶片模型在风速为5、7、9、11m/s时的剪应力进行测量,并进行了仿真结果与实验结果的分析研究。结果表明,叶片设计对... 基于ANSYS软件的有限元法,对旋转中的1.5MW风力机叶片模型在不同风速下运行时,进行气动载荷分析及仿真模拟;用车载法对叶片模型在风速为5、7、9、11m/s时的剪应力进行测量,并进行了仿真结果与实验结果的分析研究。结果表明,叶片设计对叶片气动载荷特性有较大影响;同时仿真模拟结果与实验结果吻合良好,表明该方法能比较准确地反应实际叶片的受力情况。其结果为开展叶片气动载荷研究提供了可行的途径。 展开更多
关键词 风力机叶片模型 ANSYS软件 气动载荷 实验研究
下载PDF
风力机塔架-叶片耦合模型风致响应时域分析 被引量:13
2
作者 柯世堂 曹九发 +1 位作者 王珑 王同光 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期87-93,共7页
基于风力机塔架-叶片耦合模型,采用改进的叶素-动量理论模拟了考虑平稳风修正、叶片旋转效应和空间相干性的风力机气动载荷,并基于有限元方法对该耦合模型进行了动力特性分析和风致响应时域计算.基于目标响应时程探讨了风力机塔架-叶片... 基于风力机塔架-叶片耦合模型,采用改进的叶素-动量理论模拟了考虑平稳风修正、叶片旋转效应和空间相干性的风力机气动载荷,并基于有限元方法对该耦合模型进行了动力特性分析和风致响应时域计算.基于目标响应时程探讨了风力机塔架-叶片耦合系统在随机风荷载作用下的动力响应特性,并与不考虑叶片影响的风力机塔架风致响应进行对比分析.研究表明,在进行风力机的抗风设计时,应该考虑塔架-叶片的耦合作用. 展开更多
关键词 风力机塔架-叶片耦合模型 风场模拟 风致响应 时域分析
下载PDF
Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade 被引量:10
3
作者 GAO Qiang CAI Xin +1 位作者 GUO Xing-wen MENG Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1746-1754,共9页
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris... The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter. 展开更多
关键词 wind turbine blade aeroelastic model classical flutter parameter sensitivities analysis
下载PDF
Numerical Simulation on Effects of Pressure Distribution of Wind Turbine Blade with a Tip Vane 被引量:5
4
作者 WANG Jian-Wen JIA Rui-Bo WU Ke-Qi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第3期203-207,共5页
It is important to study the pressure distribution on the blade and in the adjacent area while searching the power augmentation theory with adding a tip vane to the wind turbine. This paper shows the CFD simulation re... It is important to study the pressure distribution on the blade and in the adjacent area while searching the power augmentation theory with adding a tip vane to the wind turbine. This paper shows the CFD simulation relationship of the pressure distribution on the rotor blade and in the adjacent area, after calculating the pressure of the different chordwise and spanwise point on the blade with the tip vane-V(8.8×8) and without the tip vane under tip speed ratio λ 4.5. Combining the isobaric section figure in certain location, it can be seen that the tip vane improve the pressure difference between pressure and suction surface. The most influenced zone is found and these can further display the power augmentation theory of the wind turbine using the tip vane. The simulation calculation was based on N-S equations. 3-D, steady, implicit solver was chosen. Turbulence model was k-ω SST. Discretization scheme is SECOND ORDER UPWIND. Pressure-velocity coupling was a typical SIMPLE scheme. In the whole grid system, two-divided grid formation was adopted, that is, inner region and outer region. Inner region including rectangular solid blade and neighboring, outer region is semi-cylinder. There were together 720,000 nodes with tetra-prism unstructured mesh. 展开更多
关键词 Wind turbine tip vane pressure distribution numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部