This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ...This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil(NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.展开更多
The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types ...The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types and amplitudes on aerody- namic forces of airfoils and wings are studied. The deformation characteristics of a swept wing induced by steady aerodynamic load are presented. It is found that for a vibrating elastic wing at small and medium incidences, its mean aerodynamic loads are almost the same as those obtained from the static one. On the contrary, at high incidences especially around the stall incidence, the vibration may change the mean values. In addition, the larger amplitude is, the larger discrepancy will be. For a swept wing, the steady aerodynamic loads usually lead to the "pitching down" effect on the wing tip which delays the stall compared with a rigid one; But this phenomenon dose not occur on a aeroelastic wing which can induce the separation ahead and trigger the stall. The above conclusions are in good agreement with the scatter characteristics of wind-tunnel data. The reason why the data obtained from wind tunnel and CFD are different is also analyzed. Meanwhile, it can be an explanation for scatter phe- nomenon of wind-tunnel data, especially for high incidence cases, which remains a puzzle so far.展开更多
文摘This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil(NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072199 and 10872171)
文摘The unsteady Reynolds-averaged Navier-Stokes equations coupled with the k-co SST turbulence model are solved to obtain the steady and unsteady aerodynamic forces for airfoils and wings. The effects of vibration types and amplitudes on aerody- namic forces of airfoils and wings are studied. The deformation characteristics of a swept wing induced by steady aerodynamic load are presented. It is found that for a vibrating elastic wing at small and medium incidences, its mean aerodynamic loads are almost the same as those obtained from the static one. On the contrary, at high incidences especially around the stall incidence, the vibration may change the mean values. In addition, the larger amplitude is, the larger discrepancy will be. For a swept wing, the steady aerodynamic loads usually lead to the "pitching down" effect on the wing tip which delays the stall compared with a rigid one; But this phenomenon dose not occur on a aeroelastic wing which can induce the separation ahead and trigger the stall. The above conclusions are in good agreement with the scatter characteristics of wind-tunnel data. The reason why the data obtained from wind tunnel and CFD are different is also analyzed. Meanwhile, it can be an explanation for scatter phe- nomenon of wind-tunnel data, especially for high incidence cases, which remains a puzzle so far.