According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, sI, has been designed that integrates a dynamic factor (southwesterly component) and a thermodyn...According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, sI, has been designed that integrates a dynamic factor (southwesterly component) and a thermodynamic factor (OLR) for the indication of summer monsoon in the South China Sea. With the index determined for individual months of June, July and August and the entire summertime from 1975 to 1999, specific months and years are indicated that are either strong or weak in monsoon intensity. The variation is studied for the patterns and sI抯 relationship is revealed with the onset of summer monsoon and the precipitation in Guangdong province and China. The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsoon over the past 25 years. When it has an early (late) onset, the summer monsoon is usually strong (weak). In the strong (weak) monsoon years, precipitation tends to be more (less) in the first raining season of the year but normal or less (normal) in the second, in the province, but it would be more (less) in northeastern China and most parts of the northern China and south of the lower reaches of the Changjiang River and less (more) in the middle and lower reaches of the river, western part of northern China and western China.展开更多
The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechan...The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.展开更多
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n...A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.展开更多
As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields ...As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions.展开更多
The fluctuation characteristics is the inherent property of wind power.Through analysis of a large number of wind t'anns based on measured data,we find it describes the best probability distribution of wind power flu...The fluctuation characteristics is the inherent property of wind power.Through analysis of a large number of wind t'anns based on measured data,we find it describes the best probability distribution of wind power fluctuation for the mixed Gauss distribution of two components,and try to carry out the physical interpretation of two components.Further discussion is between the probability distribution of fluctuating wind power time difference and whole relationship.It is found that the two have basic similarity.Through comparing the different time level data quantified losses the information of wind power fluctuation,quantitative determination of the degree of impact prediction.We can summarize and understand of wind power fluctuation,constructing instance from the wind farm construction and monitoring prediction two aspect recommendations to overcome the adverse effects of wind power fluctuations on the power grid operation.展开更多
After years of booming growth on renewable energy, the untapped land suitable for the wind farm becomes increasingly scarce in China. In order to make full use of the land, it became a realistic practice to construct ...After years of booming growth on renewable energy, the untapped land suitable for the wind farm becomes increasingly scarce in China. In order to make full use of the land, it became a realistic practice to construct wind farm together with PV station in those areas where both the wind resource and solar resource are rich. In this paper, based on the analysis of spatial distribution characteristics of wind and solar resources, the factors influencing on the layout of wind turbine and PV array and the interaction between wind turbine and PV array, a proposal for co-siting design wind farm and PV station is discussed.展开更多
The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using m...The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using mesoscale surface observations, radar reflectivity, satellite nephograms, and the final(FNL) analyses of the Global Forecasting System(GFS) of the National Center for Environmental Prediction(NCEP). The rainfall processes during Soudelor's landfall and translation over East China could be separated into four stages based on rainfall characteristics such as distribution, intensity, and corresponding dynamics. The relatively less precipitation in the first stage resulted from interaction between the easterly wind to the north flank of this tropical cyclone(TC) and the coastal topography along the southeast of Zhejiang Province, China. With landfall of the TC in East China during the second stage, precipitation maxima occurred because of interaction between the TC's principal rainbands and the local topography from northeastern Fujian Province to southwestern Zhejiang Province. The distribution of precipitation presented significant asymmetric features in the third stage with maximal rainfall bands in the northeast quadrant of the TC when Soudelor's track turned from westward to northward as the TC decayed rapidly. Finally, during the northward to northeastward translation of the TC in the fourth stage, the interaction between a mid-latitude weather system and the northern part of the TC resulted in transfer of the maximum rainfall from the north of Zhejiang Province to the north of Jiangsu Province,which represented the end of rainfall in Zhejiang Province. Further quantitative calculations of the rainfall rate induced by the interaction between local topography and TC circulation(defined as "orographic effects") in the context of a one-dimensional simplified model showed that orographic effects were the primary factor determining the intensity of precipitation in this case,and accounted for over 50% of the total precipitation. The asymmetric distribution of the TC's rainbands was closely related to the asymmetric distribution of moisture resulted from changes of the TC's structure, and led to asymmetric distribution of local intense precipitation induced by Soudelor. Based on analysis of this TC, it could be concluded that local severe rainfall in the coastal regions of East China is closely related to changes of TC structure and intensity, as well as the outer rainbands. In addition, precipitation intensity and duration will increase correspondingly because of the complex interactions between the TC and local topography, and the particular TC track along large-scale steering flow. The results of this study may be useful for the understanding, prediction, and warning of disasters induced by local extreme rainfall caused by TCs, especially for facilitating forecasting and warning of flooding and mudslides associated with torrential rain caused by interactions between landfalling TCs and coastal topography.展开更多
基金 Research on the Formation Mechanism and Prediction Theory of Severe Climate Disasters in China (G1998040900(I))
文摘According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, sI, has been designed that integrates a dynamic factor (southwesterly component) and a thermodynamic factor (OLR) for the indication of summer monsoon in the South China Sea. With the index determined for individual months of June, July and August and the entire summertime from 1975 to 1999, specific months and years are indicated that are either strong or weak in monsoon intensity. The variation is studied for the patterns and sI抯 relationship is revealed with the onset of summer monsoon and the precipitation in Guangdong province and China. The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsoon over the past 25 years. When it has an early (late) onset, the summer monsoon is usually strong (weak). In the strong (weak) monsoon years, precipitation tends to be more (less) in the first raining season of the year but normal or less (normal) in the second, in the province, but it would be more (less) in northeastern China and most parts of the northern China and south of the lower reaches of the Changjiang River and less (more) in the middle and lower reaches of the river, western part of northern China and western China.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50708030 and 90815021)
文摘The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.
文摘A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.
基金supported by the National Key Research and Development Program of China (Nos. 2018YFC0809600,2018YFC0809604)the National Natural Science Foundation of China(No.51678451).
文摘As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions.
文摘The fluctuation characteristics is the inherent property of wind power.Through analysis of a large number of wind t'anns based on measured data,we find it describes the best probability distribution of wind power fluctuation for the mixed Gauss distribution of two components,and try to carry out the physical interpretation of two components.Further discussion is between the probability distribution of fluctuating wind power time difference and whole relationship.It is found that the two have basic similarity.Through comparing the different time level data quantified losses the information of wind power fluctuation,quantitative determination of the degree of impact prediction.We can summarize and understand of wind power fluctuation,constructing instance from the wind farm construction and monitoring prediction two aspect recommendations to overcome the adverse effects of wind power fluctuations on the power grid operation.
文摘After years of booming growth on renewable energy, the untapped land suitable for the wind farm becomes increasingly scarce in China. In order to make full use of the land, it became a realistic practice to construct wind farm together with PV station in those areas where both the wind resource and solar resource are rich. In this paper, based on the analysis of spatial distribution characteristics of wind and solar resources, the factors influencing on the layout of wind turbine and PV array and the interaction between wind turbine and PV array, a proposal for co-siting design wind farm and PV station is discussed.
基金supported by the Huadong Regional Meteorological Science and Technology Innovation Fund Collaborative Project (Grant No. QYHZ201404)the Development of Social Welfare Project of Zhejiang Province (Grant No. 2013C33037)+2 种基金the Science Foundation of Zhejiang Province (Grant No. LY18D050001)United States Office of Naval Research Project (Grant No. N000140910526)the Development of Social Welfare Key Project of Zhejiang Province (Grant No. 2017C03035)
文摘The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using mesoscale surface observations, radar reflectivity, satellite nephograms, and the final(FNL) analyses of the Global Forecasting System(GFS) of the National Center for Environmental Prediction(NCEP). The rainfall processes during Soudelor's landfall and translation over East China could be separated into four stages based on rainfall characteristics such as distribution, intensity, and corresponding dynamics. The relatively less precipitation in the first stage resulted from interaction between the easterly wind to the north flank of this tropical cyclone(TC) and the coastal topography along the southeast of Zhejiang Province, China. With landfall of the TC in East China during the second stage, precipitation maxima occurred because of interaction between the TC's principal rainbands and the local topography from northeastern Fujian Province to southwestern Zhejiang Province. The distribution of precipitation presented significant asymmetric features in the third stage with maximal rainfall bands in the northeast quadrant of the TC when Soudelor's track turned from westward to northward as the TC decayed rapidly. Finally, during the northward to northeastward translation of the TC in the fourth stage, the interaction between a mid-latitude weather system and the northern part of the TC resulted in transfer of the maximum rainfall from the north of Zhejiang Province to the north of Jiangsu Province,which represented the end of rainfall in Zhejiang Province. Further quantitative calculations of the rainfall rate induced by the interaction between local topography and TC circulation(defined as "orographic effects") in the context of a one-dimensional simplified model showed that orographic effects were the primary factor determining the intensity of precipitation in this case,and accounted for over 50% of the total precipitation. The asymmetric distribution of the TC's rainbands was closely related to the asymmetric distribution of moisture resulted from changes of the TC's structure, and led to asymmetric distribution of local intense precipitation induced by Soudelor. Based on analysis of this TC, it could be concluded that local severe rainfall in the coastal regions of East China is closely related to changes of TC structure and intensity, as well as the outer rainbands. In addition, precipitation intensity and duration will increase correspondingly because of the complex interactions between the TC and local topography, and the particular TC track along large-scale steering flow. The results of this study may be useful for the understanding, prediction, and warning of disasters induced by local extreme rainfall caused by TCs, especially for facilitating forecasting and warning of flooding and mudslides associated with torrential rain caused by interactions between landfalling TCs and coastal topography.