To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the i...To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.展开更多
A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The...A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The nonlinear differential equation of internal pressure dynamics and iteration algorithm were applied to calculate fluctuating internal pressure and time domain analysis was used to verify the accuracy of the proposed method. A simplified estimation method is also provided and its scope of application is clarified. The mechanism of internal pressure fluctuation is obtained by using the proposed method in the frequency domain and a new equivalent opening ratio is defined to evaluate internal pressure fluctuation. A series of low-rise building models with various openings and internal volumes were designed for wind tunnel tests with results agreeing well with analytical results. It is shown that the proposed frequency domain method based on Gaussian distribution of internal pressure fluctuations can be applied to predict the RMS internal pressure coefficient with adequate accuracy for any opening dimensions, while the simplified method can only be used for structure with single dominant opening. Helmholtz resonance is likely to occur when the equivalent opening ratio is adequately high, and controlling individual opening dimension is an effective strategy for avoiding Helmholtz resonance in engineering.展开更多
A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention ...A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention is paid to the charaeteristics of fluctuating wind pressures in different zones on the roof. Some selected results are presented: 1) correlations between fluctuating wind pressures on both roof surfaces, 2) eigenvalues and eigenvectors of covariance matrices of the fluctuating wind pressures, 3) probability distributions of the fluctuating wind pressures, and 4) statistical characteristics of peak factor. Furthermore, the applicability of the quasi-steady approach is discussed in detail. Based on the results, an empirical formula for estimating the minimum pressure coefficients, using a peak factor approach, is presented. Comparison of the minimum pressure coefficients determined by the proposed formula and those obtained from the wind tunnel tests is made to examine the applicability and accuracy of the proposed formula.展开更多
Tropical disturbances over the South China Sea (SCS) during the period of 1997-2006 are analyzed using the Tropical Storm and Hurricane WX products. A total of 158 tropical disturbances were formed over the SCS from 1...Tropical disturbances over the South China Sea (SCS) during the period of 1997-2006 are analyzed using the Tropical Storm and Hurricane WX products. A total of 158 tropical disturbances were formed over the SCS from 1997 to 2006, with 54 de-veloping tropical disturbances which developed into tropical depressions and 104 non-developing tropical disturbances which never developed into tropical depressions. The development rate of tropical disturbances into tropical depressions was 34.18% in these ten years. During the period of this study, total annual numbers of tropical disturbances and developing tropical disturbances over the SCS had significant decreasing trends; however, the development rate of tropical disturbances had an insignificant increasing trend.展开更多
Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No. 44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results fr...Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No. 44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results from four parameterization schemes developed recently for sea surface aerodynamic roughness length were compared with each other. Calculations of frictional speed u., drag coefficient Ca and wind stress r indicate that the calculated frictional velocities from the four schemes (8.50%-16.20%, the normalized standard error estimate, or NSEE), the computed drag coefficients and wind stress (respectively 15.08%-28.67% and 17.26%,50.59% NSEE) are reasonable. Schemes YT96 and GW03 are consistent. The 002 scheme gives overestimated values for u, and Ca. Schemes TY01 and GW03 display discontinuous characteristics in handling young wave data.展开更多
The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligant to a G protein-coupled receptor sequen...The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligant to a G protein-coupled receptor sequentially related to the opioid receptors. OFQ was originally isolated from brain, but the presence of OFQ in peripheral tissues, especially in cardiovascular system, has not been clarified. The present study was designed to investigate the peripheral tissue distribution of OFQ precusor mRNA in stroke-prone spontaneously hypertensive rats (SHRSP) and compare the difference of OFQ precusor mRNA expression in aorta or cultured vascular smooth muscle cells (VSMCs) between SHRSP and wistar-Kyoto normotensive (WKY) rats. By using quantitative reverse transcription-polymerase chain reaction (RT-PCR), OFQ precusor mRNA was detected in aorta and ovary at high levels comparable with the amounts found in brain. Moderate expression was found in testis, while a little OFQ precusor mRNA could be detected in atrium. All other peripheral tissues examined from SHRSP, including ventricle, liver, lung and kidney, showed no expression of OFQ precusor mRNA. In the vascular system, OFQ precusor mRNA was expressed in aorta, pulmonary artery, renal artery and vein at high levels comparable with the amounts found in brain. We also found that OFQ precusor mRNA levels were much higher in aorta or cultured VSMCs from SHRSP than those from WKY rats. In conclusion, the present study has shown that OFQ precusor mRNA is present in some peripheral tissues, especially in cardiovascular and reproductive system, suggesting that OFQ possibly involves in the regulation of cardiovascular and reproductive functions.展开更多
In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope...In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.展开更多
By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters...By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters of the Sea Surface Temperature (SST), thermocline depth, surface sensible heat flux and latent heat flux, and the pseudo wind stress in the Westen Equatorial Ocean are calculated in this paper. On the basis of the calculation, the response of upper layer heat structure in the Westen Pacific Warm Pool to the mean Madden-Julian Oscillation (MJO) and its relation to the El Nio events are analyzed. The results show that within the MJO frequency band (42-108 d), the distributions of sea surface wind stress and upper ocean temperature have several spatial-temporal variation structures. Among these structures, the type-I surface pseudo wind stress field plays the role of inhibiting the eastward transport of ocean heat capacity, while the type-II strengthens the heat capacity spreading eastward. Therefore the type-II surface pseudo wind stress field is the characteristic wind field that provokes El Nio events. During calm periods (July-September) of the wind stress variations, the sensible and latent heat capacity fluxes change considerably, mostly in the region between 137°-140°E, while to the east of 150°E, the heat capacity flux changes less.\ In the mean MJO state, the type-I surface pseudo wind stress field structure dominates in the Western Pacific. This is why El Nio events can not occur every year. However, when the type-II and type-III surface pseudo wind stress field structures are dominant, an El Nio event is likely to occur. In this case, if the heat capacity of the Western Pacific Warm Pool is transported eastward and combined with the Equatorial Pacific heat capacity spreading eastward, El Nio events will soon occur.展开更多
Hypertension has been found to be increased a risk of stroke in atrial fibrillation (AF). Both the European and U.S. guidelines advocate the use of the CHA2DSz-VASc (congestive heart failure, hypertension, age 〉 7...Hypertension has been found to be increased a risk of stroke in atrial fibrillation (AF). Both the European and U.S. guidelines advocate the use of the CHA2DSz-VASc (congestive heart failure, hypertension, age 〉 75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65-74 years, sex category) scheme for risk stratification. Although vitamin K antagonists is more effective than acetyl-salicylic acid at preventing ischaemic stroke, its benefit is offs by an increased haemorrhage risk. The risk of ischemic stroke in patients with AF and a CHA2DS2-VASc score of 1 are considered to be low risk and may be not expected to benefit from anticoagulation therapy. Hyper-tension carries an increased risk of ischemic stroke, however, it is also a clear risk factor for hemorrhage in AF. Therefore, the optimal anti-thrombotic management is highlighted in patients with AF with only one risk factor especially hypertension.展开更多
Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita form...Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.展开更多
On the basic of passive damping control, we do modeling and simulating in another approach to improve the vibration alleviating effect, the piezoelectric layer damping (PLD), which is called active control. The piez...On the basic of passive damping control, we do modeling and simulating in another approach to improve the vibration alleviating effect, the piezoelectric layer damping (PLD), which is called active control. The piezoelectric damping patches are under control of PID controller (matlab simulating) in voltage defference. Here, we use the software PRO/ENGINEER to design and model a wind turbine blade before using COMSOL to simulate the dynamic motion of the wind turbine blade and its interaction with aerodynamic force of wind in finite element method. Some different models are built-- the original turbine blade and the turbine blade with damping patches on different location and quantity. Then, according to the simulation results, we compare the effects of passive and active damping control, also the effect of patches locations and quantities under different wind speed. This research can provide a direction for future study about ways to decrease vibration of turbine blades.展开更多
The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the struct...The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed.展开更多
Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successful...Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr.Wennerstrom in the 1980s.However,some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency,vibration and reliability.Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation(CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade.The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper.The results show that the CF source items which originate from design parameters,such as the spanwise distributions of the loading and blading geometries,contribute to the changing of averaged incidence spanwise distribution,and further more affect the performance of axial fans/compressors with swept blades.展开更多
Potential vorticity(PV)has been widely applied as a tracer because of its property of conservation in frictionless,dry adiabatic flow.However,PV itself is more effective in describing the slow-manifold flow at large s...Potential vorticity(PV)has been widely applied as a tracer because of its property of conservation in frictionless,dry adiabatic flow.However,PV itself is more effective in describing the slow-manifold flow at large scale.Therefore,we wish to find a materially conserved invariant other than PV to diagnose severe weather such as growing and mature tropical cyclones,whose velocity and dynamic pressure vary rapidly and locally.Starting from the absolute motion equation after elimination of the pressure gradient term by introducing moist entropy and moist enthalpy,the baroclinic Ertel-Rossby invariant(ERI)in moist flow is derived by the Weber transformation.Furthermore,the material conservation property of moist ERI is proven.Besides the traditional moist potential vorticity(MPV)term,the invariant includes the moisture factor that is excluded in dry ERI and the term related to gradients of pressure,kinetic energy and potential energy that reflects the"fast-manifold"property.Therefore,it is more complete to describe the fast motions off the slow manifold for severe weather than is the MPV term.The moist ERI is then applied to diagnose a triple-typhoon system,and is compared with MPV and dry ERI.Contrastive analysis shows that moist ERI is a better tool to diagnose the movements and intensity variations of several coexisting typhoons.The moist ERI can signify the movement and development of a multi-typhoon system.It has wide application prospects for a real moist atmosphere.展开更多
On 24 August 2005, an impulse of solar wind dynamic pressure(Psw) hit the magnetosphere. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail and TC-1, we studied the geom...On 24 August 2005, an impulse of solar wind dynamic pressure(Psw) hit the magnetosphere. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail and TC-1, we studied the geomagnetic pulsations at auroral latitudes driven by the sharp decrease of Psw at the trailing edge of the impulse. The results show that the sharp decrease of Psw can excite a global pulsation in the frequency range 4.3–11.6 m Hz. The pulsation has a reversal of polarization between two auroral latitude stations, a larger power spectral density(PSD) close to resonant latitude and increasing frequency with decreasing latitude. All these features indicate that the pulsations are associated with field line resonance(FLR). The fundamental resonant frequency(the peak frequency of PSD between 4.3 and 5.8 m Hz) is dependent on magnetic local time and is largest around magnetic local noon. This feature is due to the fact that the size of magnetospheric cavity is dependent on local time and smallest at noon. A second harmonic wave at about 10 m Hz is also observed, which is strongest in the daytime sector, and becomes heavily attenuated in the night sector. The comparison of the PSDs of the pulsations driven by sharp increase and sharp decrease of Psw shows that the frequency of pulsations is negatively proportional to the size of magnetopause. Since the FLR is excited by compressional cavity/waveguide waves, the above results indicate that the resonant frequency in the magnetospheric cavity/waveguide is controlled not only by solar wind parameters but also by magnetic local time of observation point.展开更多
This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu- merical method and sound pressure in the far field obtained with an noise experiment for a novel cross ...This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu- merical method and sound pressure in the far field obtained with an noise experiment for a novel cross flow fan. The frequency characteristics of the fluctuating pressure and velocity in a cross flow fan are analyzed by means of spectral analysis and wavelet transform. The fluctuating pressures obtained by large eddy simulation on the casing wall are compared with that of experiments and show good agreement. From the spectral analysis of sound source, it is found that the pressure fluctuating peak is correspond with the sound pressure in the far field.展开更多
The Dst index,designed as a proxy of ring current intensity,is known to be also affected by other magnetospheric current systems,e.g.magnetopause current.The pressure-corrected Dst index is obtained by removing the ef...The Dst index,designed as a proxy of ring current intensity,is known to be also affected by other magnetospheric current systems,e.g.magnetopause current.The pressure-corrected Dst index is obtained by removing the effects of the solar wind dynamic pressure and the quiet time ring current.However,all previous studies treated the correction coefficient as an averaged parameter for storms of different intensity.In this paper,based on the Burton's equations and employing two independent methods,we will show a positive correlation between pressure-correction coefficient b and the intensity of the storms.We divided our storm database(872 storms in total) into three categories according to the intensity of storms.In order to improve the accuracy of calculating,we also used the higher-resolution SYM-H index data instead of Dst index to compute the corrected Dst index during different storms.Furthermore,we are able to provide corrected magnetic storm index with high-time resolution(-1 min).展开更多
文摘To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.
基金Project (No. 50378085) supported by the National Natural ScienceFoundation of China
文摘A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The nonlinear differential equation of internal pressure dynamics and iteration algorithm were applied to calculate fluctuating internal pressure and time domain analysis was used to verify the accuracy of the proposed method. A simplified estimation method is also provided and its scope of application is clarified. The mechanism of internal pressure fluctuation is obtained by using the proposed method in the frequency domain and a new equivalent opening ratio is defined to evaluate internal pressure fluctuation. A series of low-rise building models with various openings and internal volumes were designed for wind tunnel tests with results agreeing well with analytical results. It is shown that the proposed frequency domain method based on Gaussian distribution of internal pressure fluctuations can be applied to predict the RMS internal pressure coefficient with adequate accuracy for any opening dimensions, while the simplified method can only be used for structure with single dominant opening. Helmholtz resonance is likely to occur when the equivalent opening ratio is adequately high, and controlling individual opening dimension is an effective strategy for avoiding Helmholtz resonance in engineering.
基金Project(50978063) supported by the National Science Foundation of ChinaProject(NCET-09-0082) supported by the Program for New Century Excellent Talents in Chinese UniversitiesProject(121072) supported by the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China
文摘A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention is paid to the charaeteristics of fluctuating wind pressures in different zones on the roof. Some selected results are presented: 1) correlations between fluctuating wind pressures on both roof surfaces, 2) eigenvalues and eigenvectors of covariance matrices of the fluctuating wind pressures, 3) probability distributions of the fluctuating wind pressures, and 4) statistical characteristics of peak factor. Furthermore, the applicability of the quasi-steady approach is discussed in detail. Based on the results, an empirical formula for estimating the minimum pressure coefficients, using a peak factor approach, is presented. Comparison of the minimum pressure coefficients determined by the proposed formula and those obtained from the wind tunnel tests is made to examine the applicability and accuracy of the proposed formula.
基金supported by Chinese Academy of Sciences(Grant KZCX2-YW-214)NSFC Grants 40875020 and 41075054+2 种基金the Fundamental Research Funds for the Central Universities(Nos.11lgpy13 and 11lgjc10)sponsored by the tropical marine meteorology fund from the Institute of Tropical and Marine Meteorology,CMA,SOED1108Scientific Research Foundation for the Young Teachers Program of Sun Yat-sen University(No. 38000-3181402)
文摘Tropical disturbances over the South China Sea (SCS) during the period of 1997-2006 are analyzed using the Tropical Storm and Hurricane WX products. A total of 158 tropical disturbances were formed over the SCS from 1997 to 2006, with 54 de-veloping tropical disturbances which developed into tropical depressions and 104 non-developing tropical disturbances which never developed into tropical depressions. The development rate of tropical disturbances into tropical depressions was 34.18% in these ten years. During the period of this study, total annual numbers of tropical disturbances and developing tropical disturbances over the SCS had significant decreasing trends; however, the development rate of tropical disturbances had an insignificant increasing trend.
基金supported by Nanjing University of Information Science& Technology, Jiangsu Key Laboratory of Meteorological Disaster Pro-gram (KLME 050210)
文摘Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No. 44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results from four parameterization schemes developed recently for sea surface aerodynamic roughness length were compared with each other. Calculations of frictional speed u., drag coefficient Ca and wind stress r indicate that the calculated frictional velocities from the four schemes (8.50%-16.20%, the normalized standard error estimate, or NSEE), the computed drag coefficients and wind stress (respectively 15.08%-28.67% and 17.26%,50.59% NSEE) are reasonable. Schemes YT96 and GW03 are consistent. The 002 scheme gives overestimated values for u, and Ca. Schemes TY01 and GW03 display discontinuous characteristics in handling young wave data.
文摘The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligant to a G protein-coupled receptor sequentially related to the opioid receptors. OFQ was originally isolated from brain, but the presence of OFQ in peripheral tissues, especially in cardiovascular system, has not been clarified. The present study was designed to investigate the peripheral tissue distribution of OFQ precusor mRNA in stroke-prone spontaneously hypertensive rats (SHRSP) and compare the difference of OFQ precusor mRNA expression in aorta or cultured vascular smooth muscle cells (VSMCs) between SHRSP and wistar-Kyoto normotensive (WKY) rats. By using quantitative reverse transcription-polymerase chain reaction (RT-PCR), OFQ precusor mRNA was detected in aorta and ovary at high levels comparable with the amounts found in brain. Moderate expression was found in testis, while a little OFQ precusor mRNA could be detected in atrium. All other peripheral tissues examined from SHRSP, including ventricle, liver, lung and kidney, showed no expression of OFQ precusor mRNA. In the vascular system, OFQ precusor mRNA was expressed in aorta, pulmonary artery, renal artery and vein at high levels comparable with the amounts found in brain. We also found that OFQ precusor mRNA levels were much higher in aorta or cultured VSMCs from SHRSP than those from WKY rats. In conclusion, the present study has shown that OFQ precusor mRNA is present in some peripheral tissues, especially in cardiovascular and reproductive system, suggesting that OFQ possibly involves in the regulation of cardiovascular and reproductive functions.
基金supported by the Foundation of National Key Laboratory on Ship Vibration and Noise(No. 614220400307)the National Natural Science Foundation of China(No.11872207)+1 种基金the Aeronautical Science Foundation of China(No. 20180952007)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures(No. MCMS-I-0520G01)
文摘In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.
基金supported by the National Key Basic Research Developing Program(No.G1998040900,Part One)the Key Lab of Ocean Dynamic Processes and Satellite Oceanography(SOA).
文摘By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters of the Sea Surface Temperature (SST), thermocline depth, surface sensible heat flux and latent heat flux, and the pseudo wind stress in the Westen Equatorial Ocean are calculated in this paper. On the basis of the calculation, the response of upper layer heat structure in the Westen Pacific Warm Pool to the mean Madden-Julian Oscillation (MJO) and its relation to the El Nio events are analyzed. The results show that within the MJO frequency band (42-108 d), the distributions of sea surface wind stress and upper ocean temperature have several spatial-temporal variation structures. Among these structures, the type-I surface pseudo wind stress field plays the role of inhibiting the eastward transport of ocean heat capacity, while the type-II strengthens the heat capacity spreading eastward. Therefore the type-II surface pseudo wind stress field is the characteristic wind field that provokes El Nio events. During calm periods (July-September) of the wind stress variations, the sensible and latent heat capacity fluxes change considerably, mostly in the region between 137°-140°E, while to the east of 150°E, the heat capacity flux changes less.\ In the mean MJO state, the type-I surface pseudo wind stress field structure dominates in the Western Pacific. This is why El Nio events can not occur every year. However, when the type-II and type-III surface pseudo wind stress field structures are dominant, an El Nio event is likely to occur. In this case, if the heat capacity of the Western Pacific Warm Pool is transported eastward and combined with the Equatorial Pacific heat capacity spreading eastward, El Nio events will soon occur.
文摘Hypertension has been found to be increased a risk of stroke in atrial fibrillation (AF). Both the European and U.S. guidelines advocate the use of the CHA2DSz-VASc (congestive heart failure, hypertension, age 〉 75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65-74 years, sex category) scheme for risk stratification. Although vitamin K antagonists is more effective than acetyl-salicylic acid at preventing ischaemic stroke, its benefit is offs by an increased haemorrhage risk. The risk of ischemic stroke in patients with AF and a CHA2DS2-VASc score of 1 are considered to be low risk and may be not expected to benefit from anticoagulation therapy. Hyper-tension carries an increased risk of ischemic stroke, however, it is also a clear risk factor for hemorrhage in AF. Therefore, the optimal anti-thrombotic management is highlighted in patients with AF with only one risk factor especially hypertension.
基金National Basic Research Program of China (973 Program) (2009CB421505)Major Projects for Science and Technology Development of Zhejiang Province (2007C13G1610002)Natural Science Foundation Project of Zhejiang Province(Y505286)
文摘Based on the primitive equations in polar coordinates and with the supposition that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure agrees with the Fujita formula, a set of equations are derived, which describe the impact of perturbations of central pressure, position of tropical cyclones, direction and velocity of movement of tropical cyclones on the wind field. It is proved that the second order approximation of the kinetic energy of tropical cyclones can be described by the equations under linear approximation. Typhoon Wipha (2007) is selected to verify the above interpretation method, and the results show that the interpretation method of the wind field could give very good results before the landfall of tropical cyclones, while making no apparent improvement after the landfall. The dynamical interpretation method in this paper is applicable to improving the forecasts of the wind field of tropical cyclones close to the coast.
文摘On the basic of passive damping control, we do modeling and simulating in another approach to improve the vibration alleviating effect, the piezoelectric layer damping (PLD), which is called active control. The piezoelectric damping patches are under control of PID controller (matlab simulating) in voltage defference. Here, we use the software PRO/ENGINEER to design and model a wind turbine blade before using COMSOL to simulate the dynamic motion of the wind turbine blade and its interaction with aerodynamic force of wind in finite element method. Some different models are built-- the original turbine blade and the turbine blade with damping patches on different location and quantity. Then, according to the simulation results, we compare the effects of passive and active damping control, also the effect of patches locations and quantities under different wind speed. This research can provide a direction for future study about ways to decrease vibration of turbine blades.
基金the Key Project of Fund of Science and Technology Development of Shanghai (No. 07JC14023)the National Natural Science Foundation of China(No. 10572091)
文摘The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed.
基金Financially supported by National Natural Science Foundation of China(grant number:51236001)
文摘Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr.Wennerstrom in the 1980s.However,some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency,vibration and reliability.Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation(CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade.The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper.The results show that the CF source items which originate from design parameters,such as the spanwise distributions of the loading and blading geometries,contribute to the changing of averaged incidence spanwise distribution,and further more affect the performance of axial fans/compressors with swept blades.
基金supported by the National Basic Research Program of China(Grant No.2013CB430105)the National Natural Science Foundation of China(Grant Nos.41375054,41105027,40930950&40805001)the Opening Foundation of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,China(Grant No.2012LASW-B02)
文摘Potential vorticity(PV)has been widely applied as a tracer because of its property of conservation in frictionless,dry adiabatic flow.However,PV itself is more effective in describing the slow-manifold flow at large scale.Therefore,we wish to find a materially conserved invariant other than PV to diagnose severe weather such as growing and mature tropical cyclones,whose velocity and dynamic pressure vary rapidly and locally.Starting from the absolute motion equation after elimination of the pressure gradient term by introducing moist entropy and moist enthalpy,the baroclinic Ertel-Rossby invariant(ERI)in moist flow is derived by the Weber transformation.Furthermore,the material conservation property of moist ERI is proven.Besides the traditional moist potential vorticity(MPV)term,the invariant includes the moisture factor that is excluded in dry ERI and the term related to gradients of pressure,kinetic energy and potential energy that reflects the"fast-manifold"property.Therefore,it is more complete to describe the fast motions off the slow manifold for severe weather than is the MPV term.The moist ERI is then applied to diagnose a triple-typhoon system,and is compared with MPV and dry ERI.Contrastive analysis shows that moist ERI is a better tool to diagnose the movements and intensity variations of several coexisting typhoons.The moist ERI can signify the movement and development of a multi-typhoon system.It has wide application prospects for a real moist atmosphere.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NS2015089)
文摘On 24 August 2005, an impulse of solar wind dynamic pressure(Psw) hit the magnetosphere. Using the high resolution geomagnetic field data from 15 ground stations and the data from Geotail and TC-1, we studied the geomagnetic pulsations at auroral latitudes driven by the sharp decrease of Psw at the trailing edge of the impulse. The results show that the sharp decrease of Psw can excite a global pulsation in the frequency range 4.3–11.6 m Hz. The pulsation has a reversal of polarization between two auroral latitude stations, a larger power spectral density(PSD) close to resonant latitude and increasing frequency with decreasing latitude. All these features indicate that the pulsations are associated with field line resonance(FLR). The fundamental resonant frequency(the peak frequency of PSD between 4.3 and 5.8 m Hz) is dependent on magnetic local time and is largest around magnetic local noon. This feature is due to the fact that the size of magnetospheric cavity is dependent on local time and smallest at noon. A second harmonic wave at about 10 m Hz is also observed, which is strongest in the daytime sector, and becomes heavily attenuated in the night sector. The comparison of the PSDs of the pulsations driven by sharp increase and sharp decrease of Psw shows that the frequency of pulsations is negatively proportional to the size of magnetopause. Since the FLR is excited by compressional cavity/waveguide waves, the above results indicate that the resonant frequency in the magnetospheric cavity/waveguide is controlled not only by solar wind parameters but also by magnetic local time of observation point.
基金a Grant-in-Aid for Scientific Research through grant number 50676035 from National Natural Science Foundation of China
文摘This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu- merical method and sound pressure in the far field obtained with an noise experiment for a novel cross flow fan. The frequency characteristics of the fluctuating pressure and velocity in a cross flow fan are analyzed by means of spectral analysis and wavelet transform. The fluctuating pressures obtained by large eddy simulation on the casing wall are compared with that of experiments and show good agreement. From the spectral analysis of sound source, it is found that the pressure fluctuating peak is correspond with the sound pressure in the far field.
基金supported by the Key Project of the National Natural Science Foundation of China (Grant No 40831061)
文摘The Dst index,designed as a proxy of ring current intensity,is known to be also affected by other magnetospheric current systems,e.g.magnetopause current.The pressure-corrected Dst index is obtained by removing the effects of the solar wind dynamic pressure and the quiet time ring current.However,all previous studies treated the correction coefficient as an averaged parameter for storms of different intensity.In this paper,based on the Burton's equations and employing two independent methods,we will show a positive correlation between pressure-correction coefficient b and the intensity of the storms.We divided our storm database(872 storms in total) into three categories according to the intensity of storms.In order to improve the accuracy of calculating,we also used the higher-resolution SYM-H index data instead of Dst index to compute the corrected Dst index during different storms.Furthermore,we are able to provide corrected magnetic storm index with high-time resolution(-1 min).