Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To addr...Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.展开更多
In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow aroun...In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.展开更多
The hypersonic long-run scramjet test tunnel is one of the key ground facilities for the studies of ramjet/scramjet and hypersonic thermal management.Due to the significantly large heat loading,the nozzle of the tunne...The hypersonic long-run scramjet test tunnel is one of the key ground facilities for the studies of ramjet/scramjet and hypersonic thermal management.Due to the significantly large heat loading,the nozzle of the tunnel facility demands effective cooling protection.In this work,the two-dimensional,three-dimensional and axisymmetric Mach 6.5 nozzles at an inlet total temperature of 1840 K and a total pressure of 6.4 MPa were studied with main focuses on the properties of aerodynamic heating of nozzles.The present work aims to provide insights into the design of an effective cooling system for the nozzle and other components of the hypersonic long-run wind tunnel.展开更多
The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial ...The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with avail- able measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estima- tion of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub end- wall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.展开更多
文摘Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
文摘In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.
基金supported by the National Natural Science Foundation of China(Grant Nos.11202218 and 11172309)
文摘The hypersonic long-run scramjet test tunnel is one of the key ground facilities for the studies of ramjet/scramjet and hypersonic thermal management.Due to the significantly large heat loading,the nozzle of the tunnel facility demands effective cooling protection.In this work,the two-dimensional,three-dimensional and axisymmetric Mach 6.5 nozzles at an inlet total temperature of 1840 K and a total pressure of 6.4 MPa were studied with main focuses on the properties of aerodynamic heating of nozzles.The present work aims to provide insights into the design of an effective cooling system for the nozzle and other components of the hypersonic long-run wind tunnel.
基金Financial supports for the work presented are provided by National Natural Science Foundation of China (Project No: 50806073)China Postdoctoral Science Foundation (Project No: 20070420068)K C Wong Education Foundation, these supports are greatly appreciated
文摘The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with avail- able measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estima- tion of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub end- wall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.