In this study,the relationship of tropical cyclone(TC)size change rate(SCR),within 24 hours,with size,intensity,and intensity change rate(ICR)are explored over the western North Pacific.TC size is defined as the azimu...In this study,the relationship of tropical cyclone(TC)size change rate(SCR),within 24 hours,with size,intensity,and intensity change rate(ICR)are explored over the western North Pacific.TC size is defined as the azimuthally averaged radius of gale-force wind of 17 m s−1(R17)based on the Multiplatform Tropical Cyclone Surface Winds Analysis data.The majority of SCRs are mainly distributed in the range from−20 to 80 km d−1.The correlation coefficients between SCR and size(SCR-R17),intensity,and ICR(SCR-ICR)are−0.43,−0.12,and 0.25,respectively.The sensitivity of the SCR-R17 and SCR-ICR relationships to size,intensity,and evolution stage are further examined.Results show that the SCR-R17 relationship is more sensitive to variations of size and evolution stage than that of intensity.The relationship of SCR-ICR is largely modulated by the evolution stage.The correlation coefficient of SCR-ICR can increase from 0.25 to 0.40 when only considering the lifetime stages concurrently before and after the lifetime maximum size(LMS)and lifetime maximum intensity.This demonstrates that ICR is a potential factor in predicting SCR during these evolution stages.Besides,the TC size expansion(shrinkage)is more likely to occur for TCs with smaller(larger)size and weaker(stronger)intensity.The complexity of size change during a TC's lifetime can be attributed to the fact that shrinkage or expansion could occur both before and after LMS.展开更多
The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were in- vestigated using satellite and Argo data, as well as an ocean general circulation model. In...The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were in- vestigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6-13, 2008. It is found that the local response fight under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.展开更多
基金This study was supported by the National Natural Science Foundation of China[grant numbers 41975071 and 41775063].
文摘In this study,the relationship of tropical cyclone(TC)size change rate(SCR),within 24 hours,with size,intensity,and intensity change rate(ICR)are explored over the western North Pacific.TC size is defined as the azimuthally averaged radius of gale-force wind of 17 m s−1(R17)based on the Multiplatform Tropical Cyclone Surface Winds Analysis data.The majority of SCRs are mainly distributed in the range from−20 to 80 km d−1.The correlation coefficients between SCR and size(SCR-R17),intensity,and ICR(SCR-ICR)are−0.43,−0.12,and 0.25,respectively.The sensitivity of the SCR-R17 and SCR-ICR relationships to size,intensity,and evolution stage are further examined.Results show that the SCR-R17 relationship is more sensitive to variations of size and evolution stage than that of intensity.The relationship of SCR-ICR is largely modulated by the evolution stage.The correlation coefficient of SCR-ICR can increase from 0.25 to 0.40 when only considering the lifetime stages concurrently before and after the lifetime maximum size(LMS)and lifetime maximum intensity.This demonstrates that ICR is a potential factor in predicting SCR during these evolution stages.Besides,the TC size expansion(shrinkage)is more likely to occur for TCs with smaller(larger)size and weaker(stronger)intensity.The complexity of size change during a TC's lifetime can be attributed to the fact that shrinkage or expansion could occur both before and after LMS.
基金supported by the National Basic Research Pro-gram of China(Grant No.2013CB430302)the National Natural Science Foundation of China(Grant Nos.91128204,41321004,41475101,41421005)+1 种基金the China Scholarship Council,the CAS Strategic Priority Project(Grant Nos.XDA 11010301,XDA11010104)the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)
文摘The characteristics of the upper ocean response to tropical cyclone wind (TCW) forcing in the northwestern Pacific were in- vestigated using satellite and Argo data, as well as an ocean general circulation model. In particular, a case study was carried out on typhoon Rammasun, which passed through our study area during May 6-13, 2008. It is found that the local response fight under the TCW forcing is characterized by a quick deepening of the surface mixed layer, a strong latent heat loss to the atmosphere, and an intense upwelling near the center of typhoon, leading to a cooling of the oceanic surface layer that persists as a cold wake along the typhoon track. More interestingly, the upper ocean response exhibits a four-layer thermal structure, including a cooling layer near the surface and a warming layer right below, accompanied by another pair of cooling/warming layers in the thermocline. The formation of the surface cooling/warming layers can be readily explained by the strong vertical mixing induced by TCW forcing, while the thermal response in the thermocline is probably a result of the cyclone-driven upwelling and the associated advective processes.