For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derive...For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.展开更多
Based on the barotropic primitive equation in the polar coordinate system and the appropriate assumption, we obtained the mathematical equation of orographic forcing on unit mass air parcel. With the consideration of ...Based on the barotropic primitive equation in the polar coordinate system and the appropriate assumption, we obtained the mathematical equation of orographic forcing on unit mass air parcel. With the consideration of the frictional stress of the sea and land, supposing that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure is circular, a set of equations are derived, which describe the impact of orographic slope error, the central pressure error and position error of tropical cyclones on the wind field in the tropical cyclone. Typhoon Wipha (2007) is selected to verify the above interpretation method. The results show that the orographic slope, the frictional coefficient, the intensity and position of the cyclone are the important factors which have great influence on the interpretation of wind information about tropical cyclones. The dynamic interpretation method gives very good results, especially for the coastal area. It is applicable to improving the forecasts of the wind field in tropical cyclones.展开更多
Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical re...Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computational results show that the widely used standard k-ε turbulence closure is not suitable for such kind of study,while the other two-equation turbulence closure models produce acceptable results.The influence of the different advection schemes on the final results are small compared to that produced by the choice of turbulence closure method. The present study serves as a reference for the choice of advection schemes and turbulence closure models for more complex numerical simulation of the flow around a circular cylinder at high Reynolds number.展开更多
文摘For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.
基金National Basic Research Program of China (973 Program) (2009CB421505)major projects for science and technology development of Zhejiang province (2007C13G1610002)major promoting projects for new technology of China Meteorologycal Administration (09A13)
文摘Based on the barotropic primitive equation in the polar coordinate system and the appropriate assumption, we obtained the mathematical equation of orographic forcing on unit mass air parcel. With the consideration of the frictional stress of the sea and land, supposing that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure is circular, a set of equations are derived, which describe the impact of orographic slope error, the central pressure error and position error of tropical cyclones on the wind field in the tropical cyclone. Typhoon Wipha (2007) is selected to verify the above interpretation method. The results show that the orographic slope, the frictional coefficient, the intensity and position of the cyclone are the important factors which have great influence on the interpretation of wind information about tropical cyclones. The dynamic interpretation method gives very good results, especially for the coastal area. It is applicable to improving the forecasts of the wind field in tropical cyclones.
基金the support by the National Basic Research Program of China(Nos.2009CB421201,2011CB403501)the National Natural Science Foundation of China(Nos.40876012,41076007)
文摘Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computational results show that the widely used standard k-ε turbulence closure is not suitable for such kind of study,while the other two-equation turbulence closure models produce acceptable results.The influence of the different advection schemes on the final results are small compared to that produced by the choice of turbulence closure method. The present study serves as a reference for the choice of advection schemes and turbulence closure models for more complex numerical simulation of the flow around a circular cylinder at high Reynolds number.