Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influen...Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.展开更多
Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the p...Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the information diffusion method, which improves the precision of risk recognition when there is insufficient information. Experiments demonstrate that the method proposed in this paper is simple and effective and provides better forecast results than other methods. Future work will focus on a more precise forecast model.展开更多
It is imperative to develop a risk assessment system for quickly predicting storm surge disaster due to the vulnerability of Tianjin Binhai New Area. The flood routing model with user-defined breaches was firstly esta...It is imperative to develop a risk assessment system for quickly predicting storm surge disaster due to the vulnerability of Tianjin Binhai New Area. The flood routing model with user-defined breaches was firstly estab- lished based on the seed spread algorithm in order to achieve a rapid forecasting of storm surge flood information. Furthermore, fuzzy mathematics was utilized to identify the storm disaster grade, and the hazard mapping was con- ducted to visually obtain the hazard spatial and temporal distribution. Finally, the flood routing visuaUzation method was proposed based on numerical simulation of storm surge to achieve the reappearance scene of dynamic evolution process. The developed system can play a vital role in the management and decision-making of sea dyke mitigation engineering in Tianjin Binhai New Area.展开更多
The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerica...The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.展开更多
To describe the dynamic process of flood routing intuitively and realistically when storm surge disaster occurs,a method for ArcGIS data and Google Earth(GE) data integration is proposed,which realizes the importing a...To describe the dynamic process of flood routing intuitively and realistically when storm surge disaster occurs,a method for ArcGIS data and Google Earth(GE) data integration is proposed,which realizes the importing and integrating of basic geographic information into GE. Based on SketchUp and AutoCAD software,threedimension(3D) visualization of seawall and other tidal defense structures is achieved. By employing Microsoft Foundation Class Library(MFC),the related system modules and storm surge flood routing dynamic visualization system are developed. Therefore,dynamic visualization of flood routing process and interactive query of submerged area and inundated depth are implemented. A practical application case study of Tianjin Binhai New Area provides decision-making support for coastal seawall planning and storm surge disaster prevention and reduction.展开更多
Collaborative governance mechanism is a public management process that emphasizes the establishment of trust relationship between various subjects within the government and between multiple subjects such as the govern...Collaborative governance mechanism is a public management process that emphasizes the establishment of trust relationship between various subjects within the government and between multiple subjects such as the government and non-government based on the needs of the interest community,so as to achieve the advantages of collaborative governance.It is an important measure to improve the national storm surge disaster management system and realize the modernization of disaster management capacity.It is also the trend of the government to improve public management.Based on the results of relevant national bulletins,the storm surge disaster is selected which is the most characteristic of Marine disasters in the scope of marine public management.We select Zhejiang Province as the research area,which is heavily affected by storm surge disaster.Based on the case subjects of previous major storm surge disasters in Zhejiang Province,we analyze the specific measures taken by relevant subjects to deal with storm surge disasters.This paper presents the current situation of the participants and the cooperation problems among the participants,finds out the causes of the problems,studies and puts forward countermeasures and suggestions for the coordination management among the participants,provides certain ideas for further developing the disaster prevention and reduction and emergency management of storm surge disasters in coastal areas in order to improve the understanding of multiple subjects on the emergency management of storm surge disasters.展开更多
A numerical model for simulating storm surge with nested grid system has been applied to hindcast the coastal flooding on both sides of Taiwan Strait. The simulation results can be used to understand the transport var...A numerical model for simulating storm surge with nested grid system has been applied to hindcast the coastal flooding on both sides of Taiwan Strait. The simulation results can be used to understand the transport variation and the inundation distribution induced by the storm surge on the interested area during typhoon invades. The case in this study is Typhoon SEPAT, which passed through central Taiwan in 2007. The transport characteristics through Taiwan Strait under the influence of Typhoon SEPAT were discussed by comparing the field observations and numerical simulations during the typhoon period. The results indicate that the surge height of Typhoon SEPAT did not respond to the peak of wind waves accompanied with 15 hrs time lag. According to the influence of dynamical forces on the storm surge in Taiwan Strait, the onshore wind is the dominant role of coastal inundation during this typhoon event in Taiwan Strait. By observing the inundation map through the typhoon period, the coasts of Yulin County are verified to be the most serious affected area in the vicinity of Taiwan Strait.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51279186,51479183)the National Program on Key Basic Research Project (2011CB013704)+1 种基金the 111 Project (B14028)the Marine and Fishery Information Center Project of Jiangsu Province (SJC2014110338)
文摘Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.
基金Supported by the MISSION 908 (Nos. 908-02-03-07, SD-908-02-08)
文摘Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the information diffusion method, which improves the precision of risk recognition when there is insufficient information. Experiments demonstrate that the method proposed in this paper is simple and effective and provides better forecast results than other methods. Future work will focus on a more precise forecast model.
基金Supported by the National Basic Research Program of China("973"Program2013CB035906)National Natural Science Foundation of China(No.51209159 and No.51439005)
文摘It is imperative to develop a risk assessment system for quickly predicting storm surge disaster due to the vulnerability of Tianjin Binhai New Area. The flood routing model with user-defined breaches was firstly estab- lished based on the seed spread algorithm in order to achieve a rapid forecasting of storm surge flood information. Furthermore, fuzzy mathematics was utilized to identify the storm disaster grade, and the hazard mapping was con- ducted to visually obtain the hazard spatial and temporal distribution. Finally, the flood routing visuaUzation method was proposed based on numerical simulation of storm surge to achieve the reappearance scene of dynamic evolution process. The developed system can play a vital role in the management and decision-making of sea dyke mitigation engineering in Tianjin Binhai New Area.
基金Supported by the National Basic Research Program of China("973" Program,No.2013CB035906)Natural Science Foundation of Tianjin(No.JCYBJC19500)the Foundation of Innovative Research Groups of National Natural Science Foundation of China(No.51321065)
文摘The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.
基金State Programs of Science and Technology Development of China(No.2013CB035902)Foun-dation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)Na-tional Natural Science Foundation of China(No.51079096)
文摘To describe the dynamic process of flood routing intuitively and realistically when storm surge disaster occurs,a method for ArcGIS data and Google Earth(GE) data integration is proposed,which realizes the importing and integrating of basic geographic information into GE. Based on SketchUp and AutoCAD software,threedimension(3D) visualization of seawall and other tidal defense structures is achieved. By employing Microsoft Foundation Class Library(MFC),the related system modules and storm surge flood routing dynamic visualization system are developed. Therefore,dynamic visualization of flood routing process and interactive query of submerged area and inundated depth are implemented. A practical application case study of Tianjin Binhai New Area provides decision-making support for coastal seawall planning and storm surge disaster prevention and reduction.
文摘Collaborative governance mechanism is a public management process that emphasizes the establishment of trust relationship between various subjects within the government and between multiple subjects such as the government and non-government based on the needs of the interest community,so as to achieve the advantages of collaborative governance.It is an important measure to improve the national storm surge disaster management system and realize the modernization of disaster management capacity.It is also the trend of the government to improve public management.Based on the results of relevant national bulletins,the storm surge disaster is selected which is the most characteristic of Marine disasters in the scope of marine public management.We select Zhejiang Province as the research area,which is heavily affected by storm surge disaster.Based on the case subjects of previous major storm surge disasters in Zhejiang Province,we analyze the specific measures taken by relevant subjects to deal with storm surge disasters.This paper presents the current situation of the participants and the cooperation problems among the participants,finds out the causes of the problems,studies and puts forward countermeasures and suggestions for the coordination management among the participants,provides certain ideas for further developing the disaster prevention and reduction and emergency management of storm surge disasters in coastal areas in order to improve the understanding of multiple subjects on the emergency management of storm surge disasters.
文摘A numerical model for simulating storm surge with nested grid system has been applied to hindcast the coastal flooding on both sides of Taiwan Strait. The simulation results can be used to understand the transport variation and the inundation distribution induced by the storm surge on the interested area during typhoon invades. The case in this study is Typhoon SEPAT, which passed through central Taiwan in 2007. The transport characteristics through Taiwan Strait under the influence of Typhoon SEPAT were discussed by comparing the field observations and numerical simulations during the typhoon period. The results indicate that the surge height of Typhoon SEPAT did not respond to the peak of wind waves accompanied with 15 hrs time lag. According to the influence of dynamical forces on the storm surge in Taiwan Strait, the onshore wind is the dominant role of coastal inundation during this typhoon event in Taiwan Strait. By observing the inundation map through the typhoon period, the coasts of Yulin County are verified to be the most serious affected area in the vicinity of Taiwan Strait.