期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于SCADA数据的风机叶片结冰检测方法 被引量:20
1
作者 李宁波 闫涛 +3 位作者 李乃鹏 孔德同 刘庆超 雷亚国 《发电技术》 2018年第1期58-62,共5页
针对工作在寒冷地区的风机易出现的叶片结冰现象,提出一种基于SCADA数据的风机叶片结冰检测方法。根据叶片结冰会增大发电机的功率损耗,选择风速与网侧有功功率2个变量,利用主成分分析技术构造对叶片结冰敏感的风速与网侧有功功率在非... 针对工作在寒冷地区的风机易出现的叶片结冰现象,提出一种基于SCADA数据的风机叶片结冰检测方法。根据叶片结冰会增大发电机的功率损耗,选择风速与网侧有功功率2个变量,利用主成分分析技术构造对叶片结冰敏感的风速与网侧有功功率在非主成分方向投影特征,通过选择最优阈值使逻辑回归分类器适用于不平衡分类,可以实现风机叶片结冰检测自动化与智能化。通过中国工业大数据创新竞赛数据验证了该方法的有效性。 展开更多
关键词 风机叶片结冰检测 SCADA数据 非主成分方向投影特征 最优阈值选择 不平衡分类
下载PDF
基于卷积神经网络的风机叶片结冰故障检测 被引量:5
2
作者 王金轩 汤占军 +1 位作者 詹跃东 周盛山 《计算机仿真》 北大核心 2021年第12期85-88,211,共5页
发电机叶片结冰是风力发电中的常见问题,准确检测叶片结冰故障能有效提高风电场的安全性与发电效率。为了准确检测叶片结冰故障,提出一种基于卷积神经网络的检测模型。通过改变1×1卷积核数量,改变特征维度并增加卷积网络的非线性,... 发电机叶片结冰是风力发电中的常见问题,准确检测叶片结冰故障能有效提高风电场的安全性与发电效率。为了准确检测叶片结冰故障,提出一种基于卷积神经网络的检测模型。通过改变1×1卷积核数量,改变特征维度并增加卷积网络的非线性,检测真实运行的风力发电机Supervisory Control And Data Acquisition (SCADA)数据。在以上基础上,使用Swish激活函数和Synthetic minority oversampling technique (SMOTE)提高模型的检测效果,获得较高的检测准确率、召回率与F1分数。并且检测另一台风力发电机SCADA数据对比验证模型泛化性。检测结果表明,Swish激活函数和SMOTE均能有效提高泛化性,评价指标表明模型泛化性较强。最终检测结果为99.59%的准确率和96.80的故障样本F1分数,泛化性检测结果为93.42%的准确率和40.15的故障样本F1分数,代表着叶片结冰故障检测模型能准确检测结冰故障,具有较好的应用前景。 展开更多
关键词 风机叶片结冰检测 卷积神经网络 故障检测
下载PDF
基于大数据分析的风机叶片结冰故障诊断 被引量:8
3
作者 黎楚阳 朱孟兆 +2 位作者 焦健 张炜 张玉波 《自动化与仪器仪表》 2020年第3期12-16,共5页
为了实现风力发电机叶片结冰故障诊断,及时进行风机叶片除冰,消除隐患。提出了基于大数据分析的人工智能算法识别风机叶片结冰的方法。首先,用结冰机理研究和数据探索的方法对风机运行数据进行分析,初步提取了24个特征量;然后,采用遗传... 为了实现风力发电机叶片结冰故障诊断,及时进行风机叶片除冰,消除隐患。提出了基于大数据分析的人工智能算法识别风机叶片结冰的方法。首先,用结冰机理研究和数据探索的方法对风机运行数据进行分析,初步提取了24个特征量;然后,采用遗传算法对24个特征量、滑动窗口宽度和支持向量机参数进行联合优化,并据此建立叶片结冰故障诊断模型。诊断结果表明,用该模型诊断叶片结冰故障的准确率为86.2%,比采用SCADA采集所有数据或初步提取的24个特征量作为模型输入的准确率有大幅度的提高;并且,将该模型用于另一个#2风机时,故障诊断准确率也达到了78.5%,证明了该方法的有效性,并具有较好的泛化能力,为识别风机叶片结冰故障提供了新思路。 展开更多
关键词 风机叶片结冰检测 大数据分析 特征量 支持向量机 遗传算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部