期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于栈式自编码网络的风机叶片结冰预测
被引量:
15
1
作者
刘娟
黄细霞
刘晓丽
《计算机应用》
CSCD
北大核心
2019年第5期1547-1550,共4页
针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集...
针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集进行训练微调,实现了故障特征的自适应提取和状态分类,有效降低了传统预测模型的复杂度,同时避免了人为特征提取对模型效果的影响。利用SCADA系统采集的某15号风机的历史数据进行训练和测试,该模型测试结果准确率为97.28%。与支持向量机(SVM)和主成分分析-支持向量机(PCA-SVM)方法得到的建模分别为91%和93%的准确率进行对比分析,实验结果表明,基于栈式自编码网络的风机叶片结冰预测模型精确度更高。
展开更多
关键词
风机叶片结冰预测
栈式自编码
深度学习
预测
模型
下载PDF
职称材料
题名
基于栈式自编码网络的风机叶片结冰预测
被引量:
15
1
作者
刘娟
黄细霞
刘晓丽
机构
航运技术与控制工程交通部重点实验室(上海海事大学)
出处
《计算机应用》
CSCD
北大核心
2019年第5期1547-1550,共4页
基金
国家自然科学基金资助项目(61304186)~~
文摘
针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集进行训练微调,实现了故障特征的自适应提取和状态分类,有效降低了传统预测模型的复杂度,同时避免了人为特征提取对模型效果的影响。利用SCADA系统采集的某15号风机的历史数据进行训练和测试,该模型测试结果准确率为97.28%。与支持向量机(SVM)和主成分分析-支持向量机(PCA-SVM)方法得到的建模分别为91%和93%的准确率进行对比分析,实验结果表明,基于栈式自编码网络的风机叶片结冰预测模型精确度更高。
关键词
风机叶片结冰预测
栈式自编码
深度学习
预测
模型
Keywords
turbine blade icing detection
Stacked AutoEncoder(SAE)
deep learning
prediction model
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于栈式自编码网络的风机叶片结冰预测
刘娟
黄细霞
刘晓丽
《计算机应用》
CSCD
北大核心
2019
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部