The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the infl...The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.展开更多
The wind system over the China seas plays an important role in climate variation there. In this paper, ERS-2 scatterometer winds covering the period of 1998 and the area of 25-41°N, 117-130°E were analyzed a...The wind system over the China seas plays an important role in climate variation there. In this paper, ERS-2 scatterometer winds covering the period of 1998 and the area of 25-41°N, 117-130°E were analyzed and compared to NCEP winds and buoy winds in the same period and location, to assess how well the ERS-2 data reflect the real wind regime, at least for this area. The results indicated that ERS-2 scatterometer winds are closer to buoy observations than NCEP winds, In addition, a new wind-wave growth relation was applied to calculate wave parameters.展开更多
variation. In the area of 2 The wind system over the seas southeast of Asia (SSEA) plays an important role in China's climate this paper, ERS scatterometer winds covering the period from January 2000 to December 2...variation. In the area of 2 The wind system over the seas southeast of Asia (SSEA) plays an important role in China's climate this paper, ERS scatterometer winds covering the period from January 2000 to December 2000 and 41°N, 105 130°E were analyzed with a distance-weighting interpolation method and the monthly mean distribution of the sea surface wind speed were given, The seasonal characteristics of winds in the SSEA were analyzed. Based on WAVEWATCH Ⅲ model, distribution of significant wave height was calculated.展开更多
Near-inertial waves(NIWs), which can be generated by wind or the parametric subharmonic instability(PSI) of internal tides, are common in the South China Sea(SCS). Moored current observations from the northern SCS hav...Near-inertial waves(NIWs), which can be generated by wind or the parametric subharmonic instability(PSI) of internal tides, are common in the South China Sea(SCS). Moored current observations from the northern SCS have revealed that the PSI of semidiurnal(D_2) internal tides is another source of NIWs. The objective of this study was to examine the energy variance in the PSI of D_2 tides. The PSI of D_2 internal tides generated NIWs and waves with frequencies around the difference frequency of D_2 and f. The observed NIWs induced by PSI could be distinguished clearly from those elicited by typhoon Krosa. Shortly after Krosa entered the SCS, NIWs began to intensify on the surface and they propagated downward over subsequent days. The near-inertial currents were damped quickly and they became relatively weak before the waves were reinforced beneath the mixed layer when wind stress was relatively weak. Rotation spectra indicated an energy peak at exactly the difference frequency D_2–f of the NIWs and D_2, indicating nonlinear wave-wave interaction among D_2, f, and D_2–f. Depth-time maps of band-pass fi ltered velocities of D_2 –f showed the waves amplifi ed when the NIWs were reinforced, and they intensifi ed at depths with strong D_2 tides. The energies of the NIWs and D_2 –f had high correlation with the D_2 tides. The PSI transferred energy of low-mode D_2 internal tides to high-mode NIWs and D_2–f waves. For the entire observational period, PSI reinforcement was observed only when mesoscale eddies emerged and when D_2 was in spring tide, revealing a close connection between mesoscale eddies and NIWs. Mesoscale eddies could increase the energy in the f-band by enhancing the PSI of D_2 internal tides. Thus, this represents another mechanism linking the energy of mesoscale eddies to that of NIWs.展开更多
We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months an...We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days. Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.展开更多
A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of sh...A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.展开更多
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attribute...Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.展开更多
To describe both the way in which a wave spectrum grows and the growth processes of realistic wave conditions,the dependence relationship between the spectrum parameters and wind parameters must be obtained. Based on ...To describe both the way in which a wave spectrum grows and the growth processes of realistic wave conditions,the dependence relationship between the spectrum parameters and wind parameters must be obtained. Based on data measured in 2010 by a Wave Rider buoy,which was deployed in the South China Sea at coordinates 21.89°N,115.13°E,we evaluated the wave spectrum in the sea area when affected by three typhoons:Conson,Chanthu,and Megi. The Joint North Sea Wave Project spectrum was parameterized based on the observed wave spectrum. We proposed a spectrum with three parameters:the dimensionless lowest moment of the spectrum,dimensionless peak frequency,and spectrum width. The relationships between these spectral parameters and the dimensionless fetch were also discussed.展开更多
The statistical characterization of sea conditions in the South China Sea(SCS) was investigated by analyzing a 30-year(1976–2005) numerically simulated daily wave height and wind speed data. The monthly variation of ...The statistical characterization of sea conditions in the South China Sea(SCS) was investigated by analyzing a 30-year(1976–2005) numerically simulated daily wave height and wind speed data. The monthly variation of these parameters shows that wave height and wind speed have minimum values of 0.54 m and 4.15 ms^(-1), respectively in May and peak values of 2.04 m and 8.12 ms^(-1), respectively in December. Statistical analysis of the daily wave height and wind speed and the subsequent characterization of the annual, seasonal and monthly mean sea state based on these parameters were also done. Results showed that, in general, the slight sea state prevails in the SCS and has nearly the highest occurrence in all seasons and months. The moderate sea condition prevails in the winter months of December and January while the smooth(wavelets) sea state prevails in May. Furthermore, spatial variation of sea states showed that calm and smooth sea conditions have high occurrences(25%–80%) in the southern SCS. The slight sea condition shows the largest occurrence(25%–55%) over most parts of the SCS. High occurrences(8%–17%) of the rough and very rough seas distribute over some regions in the central SCS. Sea states from high to phenomenal conditions show rare occurrence(<12%) in the northern SCS. The calm(glassy) sea condition shows no occurrence in the SCS.展开更多
Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting ...Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.展开更多
Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads an...Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint return periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.展开更多
The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such a...The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.展开更多
Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields ...Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed(WS) and significant wave height(SWH) in the China Seas over the period 1988–2011 using the Cross-Calibrated Multi-Platform(CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III(WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988–2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s^(-1)yr^(-1) and 1.52 cm yr^(-1), respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Ni?o and a significant increase in the occurrence of gale force winds in the region.展开更多
Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No. 44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results fr...Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No. 44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results from four parameterization schemes developed recently for sea surface aerodynamic roughness length were compared with each other. Calculations of frictional speed u., drag coefficient Ca and wind stress r indicate that the calculated frictional velocities from the four schemes (8.50%-16.20%, the normalized standard error estimate, or NSEE), the computed drag coefficients and wind stress (respectively 15.08%-28.67% and 17.26%,50.59% NSEE) are reasonable. Schemes YT96 and GW03 are consistent. The 002 scheme gives overestimated values for u, and Ca. Schemes TY01 and GW03 display discontinuous characteristics in handling young wave data.展开更多
Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that ...Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.展开更多
In recent years,natural disasters in coastal areas have become more frequent due to sea level rise and other impact factors under the scenario of global warming,causing great losses to human society.Mangrove forest,an...In recent years,natural disasters in coastal areas have become more frequent due to sea level rise and other impact factors under the scenario of global warming,causing great losses to human society.Mangrove forest,an important shelterbelt in coastal areas,plays an extremely important role in reducing the coastal hazards risk.In this paper,the effects of mangrove ecosystem on coastal hazards reduction are reviewed from the aspects of wind prevention,wave attenuation,sedimentation acceleration,tsunamis mitigation,and provide theoretical support and technical guidance for the protection and cultivation of mangrove forests.展开更多
Energetic near-inertial internal waves (NlWs) were observed on the continental slope of the northern South China Sea in September 2008. Characteristics of the observed near-inertial waves were examined based on curr...Energetic near-inertial internal waves (NlWs) were observed on the continental slope of the northern South China Sea in September 2008. Characteristics of the observed near-inertial waves were examined based on current data recorded by a moored acoustic Doppler current profiler. Results of a simple slab model indicated that the NIWs were generated by the surface winds of Typhoon Hagupit. Following Hagupit's passage, the wave field was dominated by baroclinic NIWs. The near-inertial currents were surface-intensified with a maximum of 0.52 m/s but still reached 0.1 m/s at the depth of 210 m. Moreover, the near-inertial currents were clockwise-polarized and slightly elliptical. A depth-leading phase of the near- inertial currents was evident, which indicated downward energy propagation. However, the rotary vertical wavenumber spectra suggested that upward energy propagation also existed, which was consistent previous theoretical study. The frequency of the NIWs, modified by the positive background vorticity, was 0.714 2 cycles per day, which was 0.02f0 higher than the local inertial frequency (f0). The near-inertial kinetic energy evolved exponentially and had an e-folding timescale of about 3 days. The vertical phase and group velocity were estimated to be 10 and 2.1 m/h, respectively, corresponding to a vertical wavelength of 340 m. The NlWs were dominated by the second mode with a variance contribution of 〉50%, followed by the third mode, while the first mode was insignificant.展开更多
There have been investigated empirically the influence of macroeconomic and real estate market variables on the level of non-performing loans in the Baltic States. A secondary goal was to analyze the effect of constan...There have been investigated empirically the influence of macroeconomic and real estate market variables on the level of non-performing loans in the Baltic States. A secondary goal was to analyze the effect of constant loan portfolio growth on the level of non-performing loans in mentioned countries and to define the type of influence of the variables (i.e., long-term or short-term). The research indicates that all variables except the growth rate of the real estate market (RRE) have long-term influence on the level of non-performing loans. RRE has short-term influence and variables influence is associated with the development of another variables. The influence of RRE played an important role, but it was not as crucial as it has been previously assumed. If a respective credit risk management is applied, the influence of RRE is to be eliminated. The research results indicate that the most significant reason for the growth of non-performing loans for the Baltic States presented by rapid growth of aggregated loan portfolio and unemployment rate. The increasing influence of rapid loan portfolio growth proves the assumption that banks' credit risk management policies underestimated the changes in the macroeconomic variables during the analyzed period. The changes in the real GDP had initial influence on the economic situation deterioration for Baltic States.展开更多
In this paper, the third-generation wave model WAVEWATCH-Ⅲ (WW3) was used to simulate the wave field of the East China Sea and South China Sea from January 1988 to December 2009, with wind input of CCMP wind field....In this paper, the third-generation wave model WAVEWATCH-Ⅲ (WW3) was used to simulate the wave field of the East China Sea and South China Sea from January 1988 to December 2009, with wind input of CCMP wind field. Then, the wind energy density and wave energy density were calculated by using the simulated 22-years' wave-field data and CCMP data. By synthetically considering the size of energy density, the frequency of energy level and the stability of energy density, the resources of wind energy and wave energy in the East China Sea and South China Sea were analyzed and regionalized. The result can be a guide to searching location of wind & wave power plant.展开更多
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(Nos.41376027,U1133001,41606024)+3 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-01-06)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the NSFC Innovative Group Grant Project(No.41421005)the High Performance Computing Environment Qingdao Branch of Chinese Academy of Science(CAS)
文摘The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476015).
文摘The wind system over the China seas plays an important role in climate variation there. In this paper, ERS-2 scatterometer winds covering the period of 1998 and the area of 25-41°N, 117-130°E were analyzed and compared to NCEP winds and buoy winds in the same period and location, to assess how well the ERS-2 data reflect the real wind regime, at least for this area. The results indicated that ERS-2 scatterometer winds are closer to buoy observations than NCEP winds, In addition, a new wind-wave growth relation was applied to calculate wave parameters.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)and the National Natural Science Foundation of China (No. 40476015).
文摘variation. In the area of 2 The wind system over the seas southeast of Asia (SSEA) plays an important role in China's climate this paper, ERS scatterometer winds covering the period from January 2000 to December 2000 and 41°N, 105 130°E were analyzed with a distance-weighting interpolation method and the monthly mean distribution of the sea surface wind speed were given, The seasonal characteristics of winds in the SSEA were analyzed. Based on WAVEWATCH Ⅲ model, distribution of significant wave height was calculated.
基金Supported by the Natural Science Foundation of Shandong Province of China(No.ZR2014DM017)the Natural Science Foundation of Zhejiang Province(No.LY15D060001)+4 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A502)the National Natural Science Foundation of China(Nos.41606006,41371496)the National Key Technology Research and Development Program(No.2013BAK05B04)the 111 Project of Ministry of Education of China(No.B07036)the China Postdoctoral Science Foundation(No.2017M611979)
文摘Near-inertial waves(NIWs), which can be generated by wind or the parametric subharmonic instability(PSI) of internal tides, are common in the South China Sea(SCS). Moored current observations from the northern SCS have revealed that the PSI of semidiurnal(D_2) internal tides is another source of NIWs. The objective of this study was to examine the energy variance in the PSI of D_2 tides. The PSI of D_2 internal tides generated NIWs and waves with frequencies around the difference frequency of D_2 and f. The observed NIWs induced by PSI could be distinguished clearly from those elicited by typhoon Krosa. Shortly after Krosa entered the SCS, NIWs began to intensify on the surface and they propagated downward over subsequent days. The near-inertial currents were damped quickly and they became relatively weak before the waves were reinforced beneath the mixed layer when wind stress was relatively weak. Rotation spectra indicated an energy peak at exactly the difference frequency D_2–f of the NIWs and D_2, indicating nonlinear wave-wave interaction among D_2, f, and D_2–f. Depth-time maps of band-pass fi ltered velocities of D_2 –f showed the waves amplifi ed when the NIWs were reinforced, and they intensifi ed at depths with strong D_2 tides. The energies of the NIWs and D_2 –f had high correlation with the D_2 tides. The PSI transferred energy of low-mode D_2 internal tides to high-mode NIWs and D_2–f waves. For the entire observational period, PSI reinforcement was observed only when mesoscale eddies emerged and when D_2 was in spring tide, revealing a close connection between mesoscale eddies and NIWs. Mesoscale eddies could increase the energy in the f-band by enhancing the PSI of D_2 internal tides. Thus, this represents another mechanism linking the energy of mesoscale eddies to that of NIWs.
基金National Science Fund Project of Guangdong Province (04102749) Ocean Science andTechnology Director General Fund Project of the South China Sea Branch
文摘We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days. Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.
基金supported by the National High Technology Development Project of China(Grant No.2002AA639380).
文摘A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.
基金Supported by the National Natural Science Foundation of China(Nos. 40876013,40906008,41176011,41106012,and U0933001) and GDUPS(2010)
文摘Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.U1133001,41406017,41376027)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406401)
文摘To describe both the way in which a wave spectrum grows and the growth processes of realistic wave conditions,the dependence relationship between the spectrum parameters and wind parameters must be obtained. Based on data measured in 2010 by a Wave Rider buoy,which was deployed in the South China Sea at coordinates 21.89°N,115.13°E,we evaluated the wave spectrum in the sea area when affected by three typhoons:Conson,Chanthu,and Megi. The Joint North Sea Wave Project spectrum was parameterized based on the observed wave spectrum. We proposed a spectrum with three parameters:the dimensionless lowest moment of the spectrum,dimensionless peak frequency,and spectrum width. The relationships between these spectral parameters and the dimensionless fetch were also discussed.
基金supported by the National Natural Science Foundation of China (NSFC) (41276015)the Public Science and Technology Research Funds Projects of Ocean (201505007)+1 种基金the Joint Project for the National Oceanographic Center by the NSFC and Shandong Government (U1406401)the Doctoral Fund of Ministry of Education of China (20120132110004)
文摘The statistical characterization of sea conditions in the South China Sea(SCS) was investigated by analyzing a 30-year(1976–2005) numerically simulated daily wave height and wind speed data. The monthly variation of these parameters shows that wave height and wind speed have minimum values of 0.54 m and 4.15 ms^(-1), respectively in May and peak values of 2.04 m and 8.12 ms^(-1), respectively in December. Statistical analysis of the daily wave height and wind speed and the subsequent characterization of the annual, seasonal and monthly mean sea state based on these parameters were also done. Results showed that, in general, the slight sea state prevails in the SCS and has nearly the highest occurrence in all seasons and months. The moderate sea condition prevails in the winter months of December and January while the smooth(wavelets) sea state prevails in May. Furthermore, spatial variation of sea states showed that calm and smooth sea conditions have high occurrences(25%–80%) in the southern SCS. The slight sea condition shows the largest occurrence(25%–55%) over most parts of the SCS. High occurrences(8%–17%) of the rough and very rough seas distribute over some regions in the central SCS. Sea states from high to phenomenal conditions show rare occurrence(<12%) in the northern SCS. The calm(glassy) sea condition shows no occurrence in the SCS.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation for Young Scientists of China(No.41306183)
文摘Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.
基金supported by the National Natural Science Foundation of China (51279186)the National Program on Key Basic Research Project (2011CB013704)
文摘Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint return periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.
基金jointly funded by the National Key Research and Development Projects(No.2017YFE0132000)the National Natural Science Foundation of China(Nos.5211101879,52078251,52108456)the Natural Science Foundation of Jiangsu Province(Nos.BK20211518,BK20210309)
文摘The South China Sea is rich in wind and wave energy resources,and the wind-wave combined power generation device is currently in the concept research and development stage.In recent years,extreme sea conditions such as super typhoons have frequently occurred,which poses a serious challenge to the safety of offshore floating platforms.In view of the lack of safety analysis of wind-wave combined power generation devices in extreme sea conditions at present,this paper takes the OC4-WEC combined with semi-submersible wind turbine(Semi-OC4)and the oscillating buoy wave energy converter as the research object,and establishes a mesoscale WRF-SWANFVCOM(W-S-F)real-time coupling platform based on the model coupling Toolkit(MCT)to analyze the spatial and temporal evolution of wind-wave-current in offshore wind farms during the whole process of super typhoon“Rammasun”transit.Combined with the medium/small scale nested method,the flow field characteristics of OC4-WEC platform are analyzed.The results show that the simulation accuracy of the established W-S-F platform for typhoon track is 42.51%higher than that of the single WRF model.Under the action of typhoon-wave-current,the heave motion amplitude of OC4-WEC platform is reduced by 38.1%,the surge motion amplitude is reduced by 26.7%,and the pitch motion amplitude is reduced by 23.4%.
基金the Global Change and Ocean-Atmosphere Interaction National Special Project (No. 2016-523)the open foundation of the Key Laboratory of Renewable Energy, Chinese Academy of Sciences (No. Y707k31001)+4 种基金the Junior Fellowships for CAST Advanced Innovation Think-Tank Program (No. DXB-ZKQN 2016-019)the National Key Basic Research Development Program (No. 2012CB957803)the National Natural Science Foundation of China (Nos. 41490642, 41405062, 71371148)the Fundamental Research Funds for the Central Universities (No. 3132017301)the Science found- ation of China (Xi’an) Silk Road Academy (No. 2016SY02)
文摘Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed(WS) and significant wave height(SWH) in the China Seas over the period 1988–2011 using the Cross-Calibrated Multi-Platform(CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III(WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988–2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s^(-1)yr^(-1) and 1.52 cm yr^(-1), respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Ni?o and a significant increase in the occurrence of gale force winds in the region.
基金supported by Nanjing University of Information Science& Technology, Jiangsu Key Laboratory of Meteorological Disaster Pro-gram (KLME 050210)
文摘Based on the measurements from the US National Data Buoy Center 3-m discus buoy site No. 44004 (38.5°N, 70.47°W) from January 1 to March 31 of 2003, with the COARE algorithm (Version 3.0), the results from four parameterization schemes developed recently for sea surface aerodynamic roughness length were compared with each other. Calculations of frictional speed u., drag coefficient Ca and wind stress r indicate that the calculated frictional velocities from the four schemes (8.50%-16.20%, the normalized standard error estimate, or NSEE), the computed drag coefficients and wind stress (respectively 15.08%-28.67% and 17.26%,50.59% NSEE) are reasonable. Schemes YT96 and GW03 are consistent. The 002 scheme gives overestimated values for u, and Ca. Schemes TY01 and GW03 display discontinuous characteristics in handling young wave data.
基金Supported by the National Basic Research Program of China (973 Program)(No.2011CB403500)the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, XDA05090404)+1 种基金the National Basic Research Program of China (973 Program) (No. 2010CB950302)the Qianren and Changjiang Scholar Projects, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)and SOEST-8711 & IPRC-901
文摘Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.
文摘In recent years,natural disasters in coastal areas have become more frequent due to sea level rise and other impact factors under the scenario of global warming,causing great losses to human society.Mangrove forest,an important shelterbelt in coastal areas,plays an extremely important role in reducing the coastal hazards risk.In this paper,the effects of mangrove ecosystem on coastal hazards reduction are reviewed from the aspects of wind prevention,wave attenuation,sedimentation acceleration,tsunamis mitigation,and provide theoretical support and technical guidance for the protection and cultivation of mangrove forests.
基金Supported by the National Natural Science Foundation of China(Nos.U1133001,41030855,and 41376027)the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A502)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘Energetic near-inertial internal waves (NlWs) were observed on the continental slope of the northern South China Sea in September 2008. Characteristics of the observed near-inertial waves were examined based on current data recorded by a moored acoustic Doppler current profiler. Results of a simple slab model indicated that the NIWs were generated by the surface winds of Typhoon Hagupit. Following Hagupit's passage, the wave field was dominated by baroclinic NIWs. The near-inertial currents were surface-intensified with a maximum of 0.52 m/s but still reached 0.1 m/s at the depth of 210 m. Moreover, the near-inertial currents were clockwise-polarized and slightly elliptical. A depth-leading phase of the near- inertial currents was evident, which indicated downward energy propagation. However, the rotary vertical wavenumber spectra suggested that upward energy propagation also existed, which was consistent previous theoretical study. The frequency of the NIWs, modified by the positive background vorticity, was 0.714 2 cycles per day, which was 0.02f0 higher than the local inertial frequency (f0). The near-inertial kinetic energy evolved exponentially and had an e-folding timescale of about 3 days. The vertical phase and group velocity were estimated to be 10 and 2.1 m/h, respectively, corresponding to a vertical wavelength of 340 m. The NlWs were dominated by the second mode with a variance contribution of 〉50%, followed by the third mode, while the first mode was insignificant.
文摘There have been investigated empirically the influence of macroeconomic and real estate market variables on the level of non-performing loans in the Baltic States. A secondary goal was to analyze the effect of constant loan portfolio growth on the level of non-performing loans in mentioned countries and to define the type of influence of the variables (i.e., long-term or short-term). The research indicates that all variables except the growth rate of the real estate market (RRE) have long-term influence on the level of non-performing loans. RRE has short-term influence and variables influence is associated with the development of another variables. The influence of RRE played an important role, but it was not as crucial as it has been previously assumed. If a respective credit risk management is applied, the influence of RRE is to be eliminated. The research results indicate that the most significant reason for the growth of non-performing loans for the Baltic States presented by rapid growth of aggregated loan portfolio and unemployment rate. The increasing influence of rapid loan portfolio growth proves the assumption that banks' credit risk management policies underestimated the changes in the macroeconomic variables during the analyzed period. The changes in the real GDP had initial influence on the economic situation deterioration for Baltic States.
基金supported by the National key basic research development program of China (Grant No. 2010CB950400)
文摘In this paper, the third-generation wave model WAVEWATCH-Ⅲ (WW3) was used to simulate the wave field of the East China Sea and South China Sea from January 1988 to December 2009, with wind input of CCMP wind field. Then, the wind energy density and wave energy density were calculated by using the simulated 22-years' wave-field data and CCMP data. By synthetically considering the size of energy density, the frequency of energy level and the stability of energy density, the resources of wind energy and wave energy in the East China Sea and South China Sea were analyzed and regionalized. The result can be a guide to searching location of wind & wave power plant.