GIS technology provides a powenful tool for disaster hazard assessment and mitigation. A GIS based system is developed for typhoon data management and analysis, typhoon simulation and hazard assessment for southeast c...GIS technology provides a powenful tool for disaster hazard assessment and mitigation. A GIS based system is developed for typhoon data management and analysis, typhoon simulation and hazard assessment for southeast coast of China in this paper. A typhoon database by Microsoft Access is designed. Data manipulation and analysis, typhoon simulation and hazard assessment, and visualization of results are implemented on GIS platform. This GIS-based typhoon database and analysis system greatly facilitates typhoon hazard assessment.展开更多
The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in ...The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in planning post-disaster recovery and rebuilding. This paper presents recommendations for coping with large-scale geohazards and disasters. It is essential to establish a national emergency management system for huge scale catastrophe and earthquake precursor identification. Town construction must be kept away from active faults, especially to improve town safety in areas with high risk of seismic and geological hazards, and it is important to improve geohazard investigation and remediation for mountain areas that have become loosened by earthquake activity. Geological factors must be better understood to reduce direct and secondary risks and effects of earthquakes. Site selections for public relocation require clear and informed analysis of geological and social risk reduction, so that relocation, infrastructure reconstruction, and commemorative relic-sites can be protected.展开更多
Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offioading system and fire accidents were analyzed based on the floating produc...Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offioading system and fire accidents were analyzed based on the floating production, storage and offioading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offioading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.展开更多
In this paper, an attempt to analyse landslide hazard and vulnerability in the municipality of Pahuatlfin, Puebla, Mexico, is presented. In order to estimate landslide hazard, the susceptibility, magnitude (area-velo...In this paper, an attempt to analyse landslide hazard and vulnerability in the municipality of Pahuatlfin, Puebla, Mexico, is presented. In order to estimate landslide hazard, the susceptibility, magnitude (area-velocity ratio) and landslide frequency of the area of interest were produced based on information derived from a geomorphological landslide inventory; the latter was generated by using very high resolution satellite stereo pairs along with information derived from other sources (Google Earth, aerial photographs and historical information). Estimations of landslide susceptibility were determined by combining four statistical techniques: (i) logistic regression, (ii) quadratic discriminant analysis, (iii) linear discriminant analysis, and (iv) neuronal networks. A Digital Elevation Model (DEM) of lo m spatial resolution was used to extract the slope angle, aspect, curvature, elevation and relief. These factors, in addition to land cover, lithology anddistance to faults, were used as explanatory variables for the susceptibility models. Additionally, a Poisson model was used to estimate landslide temporal frequency, at the same time as landslide magnitude was obtained by using the relationship between landslide area and the velocity of movements. Then, due to the complexity of evaluating it, vulnerability of population was analysed by applying the Spatial Approach to Vulnerability Assessment (SAVE) model which considered levels of exposure, sensitivity and lack of resilience. Results were expressed on maps on which different spatial patterns of levels of landslide hazard and vulnerability were found for the inhabited areas. It is noteworthy that the lack of optimal methodologies to estimate and quantify vulnerability is more notorious than that of hazard assessments. Consequently, levels of uncertainty linked to landslide risk assessment remain a challenge to be addressed.展开更多
Taking the importance of local action as a starting point, this analysis traces the treatment of participation of local and community actors through the three international frameworks for disaster risk reduction(DRR):...Taking the importance of local action as a starting point, this analysis traces the treatment of participation of local and community actors through the three international frameworks for disaster risk reduction(DRR): the Yokohama Strategy and Plan of Action for a Safer World, the Hyogo Framework for Action 2005–2015, and the Sendai Framework for Disaster Risk Reduction 2015–2030(SFDRR). The study finds a concerning shift away from valuing local community input and toward promoting technological advances. Community actors went from valued partners with their own expertise and relevant beliefs in Yokohama Strategy to ‘‘aid recipients’ ’ to whom tailored risk information must be transmitted(in SFDRR). This shift may reflect the top-down nature of negotiated international agreements or a broader shift toward investments in technological solutions. Whatever the cause, given widespread recognition of the importance of local knowledge and participation and growing recognition of the importance of intra-community differences in vulnerability, it suggests the need for reconsideration of both the discourse and the practice of involving community-level actors in DRR planning and implementation.展开更多
文摘GIS technology provides a powenful tool for disaster hazard assessment and mitigation. A GIS based system is developed for typhoon data management and analysis, typhoon simulation and hazard assessment for southeast coast of China in this paper. A typhoon database by Microsoft Access is designed. Data manipulation and analysis, typhoon simulation and hazard assessment, and visualization of results are implemented on GIS platform. This GIS-based typhoon database and analysis system greatly facilitates typhoon hazard assessment.
基金supported by the National Basic Research Program of the Ministry of Science and Technology of the People’s Republic of China (973 Project, Grant No. 2008CB425801)
文摘The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in planning post-disaster recovery and rebuilding. This paper presents recommendations for coping with large-scale geohazards and disasters. It is essential to establish a national emergency management system for huge scale catastrophe and earthquake precursor identification. Town construction must be kept away from active faults, especially to improve town safety in areas with high risk of seismic and geological hazards, and it is important to improve geohazard investigation and remediation for mountain areas that have become loosened by earthquake activity. Geological factors must be better understood to reduce direct and secondary risks and effects of earthquakes. Site selections for public relocation require clear and informed analysis of geological and social risk reduction, so that relocation, infrastructure reconstruction, and commemorative relic-sites can be protected.
基金Supported by the Fundamental Research Funds for the Central Universities (HEUCFR1109)"111" projects foundation (Grant No.B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offioading system and fire accidents were analyzed based on the floating production, storage and offioading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offioading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.
基金CONACyT for financial support for the research project 156242for providing a post-graduate scholarship
文摘In this paper, an attempt to analyse landslide hazard and vulnerability in the municipality of Pahuatlfin, Puebla, Mexico, is presented. In order to estimate landslide hazard, the susceptibility, magnitude (area-velocity ratio) and landslide frequency of the area of interest were produced based on information derived from a geomorphological landslide inventory; the latter was generated by using very high resolution satellite stereo pairs along with information derived from other sources (Google Earth, aerial photographs and historical information). Estimations of landslide susceptibility were determined by combining four statistical techniques: (i) logistic regression, (ii) quadratic discriminant analysis, (iii) linear discriminant analysis, and (iv) neuronal networks. A Digital Elevation Model (DEM) of lo m spatial resolution was used to extract the slope angle, aspect, curvature, elevation and relief. These factors, in addition to land cover, lithology anddistance to faults, were used as explanatory variables for the susceptibility models. Additionally, a Poisson model was used to estimate landslide temporal frequency, at the same time as landslide magnitude was obtained by using the relationship between landslide area and the velocity of movements. Then, due to the complexity of evaluating it, vulnerability of population was analysed by applying the Spatial Approach to Vulnerability Assessment (SAVE) model which considered levels of exposure, sensitivity and lack of resilience. Results were expressed on maps on which different spatial patterns of levels of landslide hazard and vulnerability were found for the inhabited areas. It is noteworthy that the lack of optimal methodologies to estimate and quantify vulnerability is more notorious than that of hazard assessments. Consequently, levels of uncertainty linked to landslide risk assessment remain a challenge to be addressed.
文摘Taking the importance of local action as a starting point, this analysis traces the treatment of participation of local and community actors through the three international frameworks for disaster risk reduction(DRR): the Yokohama Strategy and Plan of Action for a Safer World, the Hyogo Framework for Action 2005–2015, and the Sendai Framework for Disaster Risk Reduction 2015–2030(SFDRR). The study finds a concerning shift away from valuing local community input and toward promoting technological advances. Community actors went from valued partners with their own expertise and relevant beliefs in Yokohama Strategy to ‘‘aid recipients’ ’ to whom tailored risk information must be transmitted(in SFDRR). This shift may reflect the top-down nature of negotiated international agreements or a broader shift toward investments in technological solutions. Whatever the cause, given widespread recognition of the importance of local knowledge and participation and growing recognition of the importance of intra-community differences in vulnerability, it suggests the need for reconsideration of both the discourse and the practice of involving community-level actors in DRR planning and implementation.