期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
平潭海峡公铁两用大桥施工海域风速预测研究 被引量:7
1
作者 王波 孙家龙 +1 位作者 刘鹏飞 伊建军 《桥梁建设》 EI CSCD 北大核心 2017年第5期1-5,共5页
平潭海峡公铁两用大桥施工海域气象环境复杂、地质水文条件恶劣,为给大桥建设提供准确的风速预测信息,以便合理安排该桥施工调度,针对外海预报台预报数据精度不足的问题,提出采用BP神经网络法进行施工海域风环境预测。在该桥施工区域沿... 平潭海峡公铁两用大桥施工海域气象环境复杂、地质水文条件恶劣,为给大桥建设提供准确的风速预测信息,以便合理安排该桥施工调度,针对外海预报台预报数据精度不足的问题,提出采用BP神经网络法进行施工海域风环境预测。在该桥施工区域沿线建立风环境监测系统,建立外海预报台预报数据与桥址处监测数据相互映射关系的神经网络模型,精确预报该桥不同施工区域未来7d的风速,并与实测风速对比分析。结果表明:神经网络预测风速和实测风速比较接近;与实测风速相比,神经网络预测风速的误差为10%~15%。说明神经网络预测风速的精度较高,可根据其风速预报有效指导实桥的施工组织调度。 展开更多
关键词 跨海大桥 公路铁路两用大桥 风环境监测 BP神经网络 预测模型 速预测
下载PDF
Real-time Diesel Particulate Matter ambient monitoring in underground mines
2
作者 Gillies A D S 《Journal of Coal Science & Engineering(China)》 2011年第3期225-231,共7页
A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The ... A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results. 展开更多
关键词 real-time diesel particulate matter total carbon elemental carbon
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部