期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于波动特性的风电出力时间序列建模方法研究 被引量:57
1
作者 李驰 刘纯 +1 位作者 黄越辉 王伟胜 《电网技术》 EI CSCD 北大核心 2015年第1期208-214,共7页
掌握风力发电的随机、波动与间歇特性,并在此基础上构建风电出力时间序列模型对于电力系统规划与运行具有重要意义。提出了一种构造未来风电出力场景的新方法。研究了风电波动过程特性,在极值点处将历史风电出力时间序列划分为波动,采... 掌握风力发电的随机、波动与间歇特性,并在此基础上构建风电出力时间序列模型对于电力系统规划与运行具有重要意义。提出了一种构造未来风电出力场景的新方法。研究了风电波动过程特性,在极值点处将历史风电出力时间序列划分为波动,采用自组织映射(self-organization map,SOM)神经网络将波动聚类为大波动、中波动、小波动和低出力波动。波动变化规律可用高斯函数来定量表达。基于风电波动过程特性阐述了建模方法,将月份按波动出力特性进行分类,分别统计波动类间转移概率和类内统计参数的概率分布,按月序贯抽样风电波动类别与各统计参数,计算并模拟得到风电出力时间序列。对中国某省部分风电场进行了仿真模拟,统计特征参数的对比分析结果验证了上述方法的有效性。 展开更多
关键词 风电波动特性 时间序列 自组织映射聚类 序贯抽样 概率统计
下载PDF
基于改进KDE法和GA-SVM的多风电场聚合后输出功率长期波动特性预测方法 被引量:16
2
作者 肖白 邢世亨 +2 位作者 王茂春 杨森林 苟晓侃 《电力自动化设备》 EI CSCD 北大核心 2022年第2期77-84,共8页
针对规划期内有新增风电装机容量但没有与其对应的实测风电输出功率数据,导致难以准确把握和刻画规划目标年多风电场聚合后输出功率长期波动特性的问题,提出一种利用改进核密度估计(KDE)法和经遗传算法寻优的支持向量机(GA-SVM)预测多... 针对规划期内有新增风电装机容量但没有与其对应的实测风电输出功率数据,导致难以准确把握和刻画规划目标年多风电场聚合后输出功率长期波动特性的问题,提出一种利用改进核密度估计(KDE)法和经遗传算法寻优的支持向量机(GA-SVM)预测多风电场聚合后输出功率长期波动特性的方法。对风电功率的长期波动特性进行刻画,分析在多风电场聚合过程中装机容量与风电功率之间的关系;运用改进KDE法生成多风电场聚合过程中不同装机容量下的输出功率概率密度曲线;采用GA-SVM建立多风电场聚合后输出功率概率密度演变模型;根据概率分布与持续功率曲线的对应关系,对预测出的规划目标年的多风电场聚合后的输出功率概率密度曲线进行反演,得到可描述规划目标年输出功率长期波动特性的持续功率曲线。工程实例证明了所提方法的实用性和有效性。 展开更多
关键词 风电 风电波动特性 核密度估计 支持向量机
下载PDF
基于K-means MCMC算法的中长期风电时间序列建模方法研究 被引量:39
3
作者 黄越辉 曲凯 +1 位作者 李驰 司刚全 《电网技术》 EI CSCD 北大核心 2019年第7期2469-2476,共8页
构建风电功率时间序列模型对电力系统中长期规划、年/月调度和安全稳定运行具有重要意义。针对传统马尔科夫链-蒙特卡洛法(Markovchain-MonteCarlo,MCMC)法存在的缺陷,提出一种基于粒子群优化的K-means MCMC风电时间序列建模新方法。首... 构建风电功率时间序列模型对电力系统中长期规划、年/月调度和安全稳定运行具有重要意义。针对传统马尔科夫链-蒙特卡洛法(Markovchain-MonteCarlo,MCMC)法存在的缺陷,提出一种基于粒子群优化的K-means MCMC风电时间序列建模新方法。首先,对历史风电功率数据进行聚类,并对聚类后的不同类别风电功率序列选取最优状态数,分别建立状态转移矩阵;其次,用拟合度较好的混合高斯分布拟合多时间尺度的风电最大波动率的概率分布特性;最后,采用基于类间转移概率矩阵的MCMC方法依次生成模拟风电出力时间序列;同时,在生成模拟序列过程中叠加高频波动分量,使模拟序列延续历史风电序列的波动特性。通过对比本所提方法和传统MCMC法分别生成的模拟风电出力序列以及历史风电功率序列,验证了所提方法的有效性和准确性。 展开更多
关键词 马尔科夫链-蒙特卡洛法 混合高斯分布 K-MEANS聚类 最优状态数 风电波动特性 时间序列
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部