The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fa...The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fan for which we analyzed air vibration signals and axial vibration signals by using correlation dimension analysis under five variable working conditions.The results indicate that their correlation dimension curves show a uniform trend.That is to say, the characteristics of the variation signals of the integral structure are correlated and mutually embodied.It proves that it is possible to monitor the working state of a mine fan by coupling the vibration signals and air vibration signals for these are more sensitive in representing the status of the impeller system.展开更多
By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibra...By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.展开更多
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament...In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.展开更多
Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and ...Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.展开更多
A dual-sided multiple fans system with a piezoelectric actuator ("D-MFPA"), which is able to drive eight passive vibrating fans and provide two-directional air flows by using only one piezoelectric actuator, has b...A dual-sided multiple fans system with a piezoelectric actuator ("D-MFPA"), which is able to drive eight passive vibrating fans and provide two-directional air flows by using only one piezoelectric actuator, has been investigated in this study. Moreover, two types of the fan designs, viz. magnetic fan (MF) and composite magnetic fan (CMF) were also explored. In the investigation of the MF, the results indicated that the resonance frequency of the D-MFPA increased from 27.6 Hz to 66 Hz as the length of the carbon fiber plate (L) decreased from 55 mm to 35 mm. It also decreased the amplitude of the D-MFPA from 12.4mm to 4.8 mm. For CMF, the results showed that the resonance frequency decreased when the length of the Mylar plate (Et) increased, and the maximum decrease was from 66 Hz to 45 Hz when L= 35 mm and Er= 30 mm. Dimensionless heat convection number (MD_MFPA) was defined to describe and quantify the improvement in the thermal performance. The results showed that the optimal MO-MFPA of the single piezoelectric fan was 1,58 for cooling one heat source. By contrast, under the same power consumption, the D-MFPA not only cooled two heat sources but also displayed better thermal performance.展开更多
基金Projects BK2005018 supported by the Natural Science Foundation of Jiangsu Province CX07B-061z by the Graduate Research and Innovation Plan of Jiangsu Province
文摘The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fan for which we analyzed air vibration signals and axial vibration signals by using correlation dimension analysis under five variable working conditions.The results indicate that their correlation dimension curves show a uniform trend.That is to say, the characteristics of the variation signals of the integral structure are correlated and mutually embodied.It proves that it is possible to monitor the working state of a mine fan by coupling the vibration signals and air vibration signals for these are more sensitive in representing the status of the impeller system.
基金Project (2007CB714706) supported by the Major State Basic Research and Development Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject (NCET-07-0866) supported by the New Century Excellent Talents in University
文摘By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
基金Projects (U1334201,51525804) supported by the National Natural Science Foundation of ChinaProject (15CXTD0005) supported by the Sichuan Province Youth Science and Technology Innovation Team,China
文摘In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.
文摘Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.
文摘A dual-sided multiple fans system with a piezoelectric actuator ("D-MFPA"), which is able to drive eight passive vibrating fans and provide two-directional air flows by using only one piezoelectric actuator, has been investigated in this study. Moreover, two types of the fan designs, viz. magnetic fan (MF) and composite magnetic fan (CMF) were also explored. In the investigation of the MF, the results indicated that the resonance frequency of the D-MFPA increased from 27.6 Hz to 66 Hz as the length of the carbon fiber plate (L) decreased from 55 mm to 35 mm. It also decreased the amplitude of the D-MFPA from 12.4mm to 4.8 mm. For CMF, the results showed that the resonance frequency decreased when the length of the Mylar plate (Et) increased, and the maximum decrease was from 66 Hz to 45 Hz when L= 35 mm and Er= 30 mm. Dimensionless heat convection number (MD_MFPA) was defined to describe and quantify the improvement in the thermal performance. The results showed that the optimal MO-MFPA of the single piezoelectric fan was 1,58 for cooling one heat source. By contrast, under the same power consumption, the D-MFPA not only cooled two heat sources but also displayed better thermal performance.