期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进K-means算法的大跨屋盖结构表面风荷载分区研究
1
作者 李玉学 杨君保 +1 位作者 陈铁 田玉基 《防灾减灾工程学报》 CSCD 北大核心 2024年第5期1106-1114,共9页
针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面... 针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。 展开更多
关键词 大跨屋盖结构 风荷载分区 K-MEANS算法 分类数 聚类中心
下载PDF
基于改进的Canopy-k-means的大跨屋盖表面风荷载分区方法
2
作者 李玉学 纪君 董阳 《河北科技大学学报》 CAS 北大核心 2024年第5期530-538,共9页
针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选... 针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选取的盲目性,以提高风荷载分区结果的可靠性;其次,通过改进Canopy算法对风荷载数据集进行预处理,快速准确地确定聚类数k值;第三,将改进Canopy算法与k-means结合使用,实现最优分类数k值的精准识别,使得改进的Canopy-k-means聚类算法进行大跨屋盖结构表面风荷载分区时能够快速准确地得到分区结果;最后,以一大跨柱面屋盖干煤棚结构为例,基于风洞试验所得结构表面风荷载数据测试结果,采用所提改进的Canopy-k-means聚类算法对其表面风荷载进行分区计算。结果表明,采用改进的Canopy-k-means聚类算法,将0°、50°和90°风向角时大跨屋盖表面风荷载划分为了3个不同的分区,其对应的SD值分别为2.36、3.51和2.52,较传统k-means聚类算法所得对应值明显降低,类内紧凑性和类间分散性明显提升。所提改进Canopy-k-means聚类算法能够快速准确地得到最优分区结果,对大跨屋盖表面风荷载分区具有工程参考价值。 展开更多
关键词 薄壳结构 荷载测压 风荷载分区 K-MEANS聚类算法 Canopy算法
下载PDF
矩形平面气承式膜结构平均风荷载与风响应特性研究 被引量:1
3
作者 武岳 张时为 赵军宾 《钢结构(中英文)》 2024年第2期50-57,共8页
气承式膜结构是典型的风敏感结构,在风荷载作用下膜面会产生较大变形,抗风问题是制约膜结构发展的重要因素。为了研究矩形平面气承式膜结构的风荷载特性,设计并制作了6个不同的刚性模型,利用尖劈、粗糙元和锯齿挡板对A、B、C共3类地貌... 气承式膜结构是典型的风敏感结构,在风荷载作用下膜面会产生较大变形,抗风问题是制约膜结构发展的重要因素。为了研究矩形平面气承式膜结构的风荷载特性,设计并制作了6个不同的刚性模型,利用尖劈、粗糙元和锯齿挡板对A、B、C共3类地貌进行模拟,在大气边界层风洞中进行了矩形平面气承式膜结构刚性模型测压试验,分析了风向、矢跨比、长宽比以及地面粗糙度等因素对结构表面平均风压分布的影响,并计算了结构在不同风向角下的风力系数。基于风洞试验获得的风荷载数据,在有限元软件ABAQUS中对原型尺寸的矩形平面气承式膜结构进行了风振响应分析,膜面选用M3D4R单元建模,拉索选用T3D2单元建模,研究了不同风向角下结构的平均风响应特性,总结了风荷载作用下膜面的位移及应力分布规律,确定了出现位移极值及应力极值的位置,最后提出了适用于矩形平面气承式膜结构的风荷载体型系数分区方案,并给出了不同分区的建议取值。研究表明:矩形平面气承式膜结构的平均风压系数受风向和结构长宽比的影响较大,受地面粗糙度影响较小;长宽比越小,上吸区的风压越小;随矢跨比增加,迎风区正风压系数增加,上吸区负风压减小;0°风向角下矩形平面气承式膜结构的风力系数最大;0°及45°风向角下,矩形平面气承式膜结构的迎风面及顶部变形较大,90°风向角下迎风面变形较大而顶部变形较小;0°及90°风向角下,结构两侧与中部连接的凸起部位应力较大,45°风向角下迎风面拐角处出现明显褶皱并伴随应力集中;0°风向角下位移及应力均最大,90°风向角下位移及应力均最小;建议0°和90°风向角下矩形平面气承式膜结构风荷载体型系数采用5分区形式,45°风向下采用7分区;0°及90°风向角下结构分区风荷载体型系数受矢跨比影响明显,45°风向下结构分区风荷载体型系数受长宽比影响明显。 展开更多
关键词 气承式膜结构 洞试验 非线性有限元分析 平均响应 分区荷载体型系数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部