This paper examines the mutual displacement of functional elements (FE) of risky technical systems (RTS). To this group of systems belong transport systems, technical systems operating in heavy regimes, energy and...This paper examines the mutual displacement of functional elements (FE) of risky technical systems (RTS). To this group of systems belong transport systems, technical systems operating in heavy regimes, energy and power systems, building structures. etc. A unit of mutual displacement of the functional elements of RTS is introduced, as well as a definition of the deformator of the system. The value of the deformator of a sample system is determined.展开更多
Wavelet analysis and Mann-Kendall tests are employed to evaluate the variation in the East Asian summer monsoon(EASM) and hydrological variables in the Haihe River basin calculated by the Variable Infiltration Capac...Wavelet analysis and Mann-Kendall tests are employed to evaluate the variation in the East Asian summer monsoon(EASM) and hydrological variables in the Haihe River basin calculated by the Variable Infiltration Capacity model. The relationships between those variables and the EASM are also examined. The results indicate consistent 40 a periodic variation in both the hydrological variables and the EASM. The hydrologic variables show downward trends in the Haihe River basin over the past 60 years, especially in piedmont regions of the Taihang-Yan Mountains. The variables are closely related to the EASM, whose continuous weakening since the 1970 s has resulted in prolonged drought and severe water shortages in the basin. The periodicity of the EASM index was analyzed using continuous wavelet transform methods. We found the most significant periodic signal of the EASM is ~80 years; therefore, the EASM may reinforce and reach a maximum in the 2040 s, resulting in more precipitation and other impacts on basin water resources. Hydrologic variables in the basin in the 2040 s are predicted, and their spatial distributions in the Haihe River basin are also discussed. These results allow for the estimation of water resources under forecasted EASM, which will be useful for water resources management in the Haihe River basin.展开更多
Based on global solar radiation and related meteorological data from 57 stations in China between 1961 and 2009, we analyze the variation of surface global solar radiation (G) and its relationship to meteorological el...Based on global solar radiation and related meteorological data from 57 stations in China between 1961 and 2009, we analyze the variation of surface global solar radiation (G) and its relationship to meteorological elements using linear-trend estimation, wavelet analysis, and the Mann-Kendall test. The results show that of the 33 stations with time series longer than 45 years, G is significant at the 95% confidence level. G has a decreasing trend at many stations, but results vary across different areas. The decadal departure percentage of G increased from the 1960s to 1970s, declined gradually after the 1970s, and decreased significantly in the 1980s. In the 1990s, the trend at a few sites slightly increased. The trend of cumulative variance is of four types, i.e. rise-fall, rise-fall-slight rise, rise-fall-rise, and not obvious. For changes within a year, the most obvious decline was in winter, and the rest of the year had a slight decrease. The major cycles of annual G were 6-9, 10-13, and 29-33 a. The inflection points were mostly in the 1970s. The reasons for greater changes were complex. Relevant meteorological elements were selected and analyzed by statistical methods. Trends in climatic parameters, such as annual average percentage of sunshine, annual average wind speed, and annual average of low cloud cover, were closely related to G. Thus, this indicated the potential causes of the observed trends in G. The long-term trend for annual G in some regions was also influenced by anthro- pogenic activities. Annual average percentage of sunshine and annual average wind speed were positively correlated with annual G, respectively.展开更多
文摘This paper examines the mutual displacement of functional elements (FE) of risky technical systems (RTS). To this group of systems belong transport systems, technical systems operating in heavy regimes, energy and power systems, building structures. etc. A unit of mutual displacement of the functional elements of RTS is introduced, as well as a definition of the deformator of the system. The value of the deformator of a sample system is determined.
基金the National Major Basic Research Program of China(2010CB428404)the“Hundred Talents Program”of Chinese Academy of Sciences(for Dong Chen)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(2015490711)
文摘Wavelet analysis and Mann-Kendall tests are employed to evaluate the variation in the East Asian summer monsoon(EASM) and hydrological variables in the Haihe River basin calculated by the Variable Infiltration Capacity model. The relationships between those variables and the EASM are also examined. The results indicate consistent 40 a periodic variation in both the hydrological variables and the EASM. The hydrologic variables show downward trends in the Haihe River basin over the past 60 years, especially in piedmont regions of the Taihang-Yan Mountains. The variables are closely related to the EASM, whose continuous weakening since the 1970 s has resulted in prolonged drought and severe water shortages in the basin. The periodicity of the EASM index was analyzed using continuous wavelet transform methods. We found the most significant periodic signal of the EASM is ~80 years; therefore, the EASM may reinforce and reach a maximum in the 2040 s, resulting in more precipitation and other impacts on basin water resources. Hydrologic variables in the basin in the 2040 s are predicted, and their spatial distributions in the Haihe River basin are also discussed. These results allow for the estimation of water resources under forecasted EASM, which will be useful for water resources management in the Haihe River basin.
基金supported by the Special Scientific Research Fund of the Meteorological Public Welfare Profession of China (Grant No.GYHY201006036)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.IAP09303)the Major State Basic Research Development Program of China (Grant No.2010CB428401)
文摘Based on global solar radiation and related meteorological data from 57 stations in China between 1961 and 2009, we analyze the variation of surface global solar radiation (G) and its relationship to meteorological elements using linear-trend estimation, wavelet analysis, and the Mann-Kendall test. The results show that of the 33 stations with time series longer than 45 years, G is significant at the 95% confidence level. G has a decreasing trend at many stations, but results vary across different areas. The decadal departure percentage of G increased from the 1960s to 1970s, declined gradually after the 1970s, and decreased significantly in the 1980s. In the 1990s, the trend at a few sites slightly increased. The trend of cumulative variance is of four types, i.e. rise-fall, rise-fall-slight rise, rise-fall-rise, and not obvious. For changes within a year, the most obvious decline was in winter, and the rest of the year had a slight decrease. The major cycles of annual G were 6-9, 10-13, and 29-33 a. The inflection points were mostly in the 1970s. The reasons for greater changes were complex. Relevant meteorological elements were selected and analyzed by statistical methods. Trends in climatic parameters, such as annual average percentage of sunshine, annual average wind speed, and annual average of low cloud cover, were closely related to G. Thus, this indicated the potential causes of the observed trends in G. The long-term trend for annual G in some regions was also influenced by anthro- pogenic activities. Annual average percentage of sunshine and annual average wind speed were positively correlated with annual G, respectively.