Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have ...Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms.展开更多
In this work the authors present a calculation process of the blades for wind turbine with horizontal axis. It is about a blade discretized by the finite element method (FEM) in order to determine the gyroscopic eff...In this work the authors present a calculation process of the blades for wind turbine with horizontal axis. It is about a blade discretized by the finite element method (FEM) in order to determine the gyroscopic effect during its rotation at a high speed. A blade must have the maximum output and resist to aerodynamic loads distributed over its length, which are related to its geometrical characteristics and the speed of the wind. For that, the authors wrote the relations whom determine these loads according to the flow speed of the wind, then, the authors integrated them in the laws of structure mechanics to obtain the motion equations of the blade. This process was applied to a twisted blade with a length of 1.9 m, built out of pressed aluminum sheet with a profile of the type NACA; this profile gives the best aerodynamic output. This blade is an element of a three-bladed propeller for wind turbine of maximum power 5 kW. Finally, we visualized its deformations and then the authors checked its holding in service.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternati...Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.展开更多
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
The paper analyzes different turbine design suitable for the urban environment. The author discusses various options for setting up wind turbines in relation to the building. In order to gain insight into the real ind...The paper analyzes different turbine design suitable for the urban environment. The author discusses various options for setting up wind turbines in relation to the building. In order to gain insight into the real indicators, considered are actual examples of wind turbines mounted on buildings, sports facilities, roads, etc. However, these turbines have relatively low efficiency and a long payback period, and the problem may be the noise they produce. Therefore, the wind turbines installed in buildings are still more a matter of prestige of individual investors and architects than profitable investment.展开更多
This paper describes the optimization of the impeller having splitters for a turbo blower.Two design variables,chord of splitter and pitch of splitter,are introduced to enhance the blower performance.Blower pressure a...This paper describes the optimization of the impeller having splitters for a turbo blower.Two design variables,chord of splitter and pitch of splitter,are introduced to enhance the blower performance.Blower pressure and ef-ficiency are selected as an object function,and the optimization of the blower impeller is performed by a response surface method (RSM).Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of the object function for each case.Throughout the shape optimization of the splitters attached to the impeller in the turbo blower,pressure and efficiency at the design flow condition are suc-cessively increased by 5.9 percent and 17.9 percent respectively based on the reference blower.The higher blower efficiency obtained by optimization of impeller having splitters is mainly caused by reducing the number of im-peller blades and optimal design of splitters in the blade passage while pressure increase keeps almost the same with the reference blower.For the object function of pressure,pressure increase is obtained at the design and off-design conditions while efficiency keeps higher compared to the reference blower.The enhancement of blow-er performance is due to the reduction of reverse and circulation flows in the blade passage.展开更多
Optimal operation of the turbo blowers having an inlet vane has been studied to understand the blowers' operating performance.To analyze three-dimensional flow field in the turbo blowers serially connected,general...Optimal operation of the turbo blowers having an inlet vane has been studied to understand the blowers' operating performance.To analyze three-dimensional flow field in the turbo blowers serially connected,general analysis code,CFX,is introduced in the present work.SST turbulence model is employed to estimate the eddy viscosity.Throughout the numerical analysis,it is found that the flow rates of the turbo blowers can be controlled at the vane angle between 90 (full open condition) degrees and 60 degrees effectively,because pressure loss rapidly increases below 60 degree of a vane angle.Efficiency also has almost the same values from 90 degrees to 60 degrees of a vane angle.It is noted that the distorted inlet velocity generated in the small vane angle makes performance deterioration of the turbo blowers due to the local leading edge separation and the following non-uniform blade loading.展开更多
基金Supported by the National Natural Science Foundation of China ( No. 50775227 ) and the Natural Science Foundation of Chongqing ( No. CSTC, 2008BC3029).
文摘Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms.
文摘In this work the authors present a calculation process of the blades for wind turbine with horizontal axis. It is about a blade discretized by the finite element method (FEM) in order to determine the gyroscopic effect during its rotation at a high speed. A blade must have the maximum output and resist to aerodynamic loads distributed over its length, which are related to its geometrical characteristics and the speed of the wind. For that, the authors wrote the relations whom determine these loads according to the flow speed of the wind, then, the authors integrated them in the laws of structure mechanics to obtain the motion equations of the blade. This process was applied to a twisted blade with a length of 1.9 m, built out of pressed aluminum sheet with a profile of the type NACA; this profile gives the best aerodynamic output. This blade is an element of a three-bladed propeller for wind turbine of maximum power 5 kW. Finally, we visualized its deformations and then the authors checked its holding in service.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.
文摘Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘The paper analyzes different turbine design suitable for the urban environment. The author discusses various options for setting up wind turbines in relation to the building. In order to gain insight into the real indicators, considered are actual examples of wind turbines mounted on buildings, sports facilities, roads, etc. However, these turbines have relatively low efficiency and a long payback period, and the problem may be the noise they produce. Therefore, the wind turbines installed in buildings are still more a matter of prestige of individual investors and architects than profitable investment.
基金supported by the Korea Institute of Industrial Technology Evaluation and Planning (ITEP) grant funded by the Ministry of Knowledge Economy (No.10032063)
文摘This paper describes the optimization of the impeller having splitters for a turbo blower.Two design variables,chord of splitter and pitch of splitter,are introduced to enhance the blower performance.Blower pressure and ef-ficiency are selected as an object function,and the optimization of the blower impeller is performed by a response surface method (RSM).Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of the object function for each case.Throughout the shape optimization of the splitters attached to the impeller in the turbo blower,pressure and efficiency at the design flow condition are suc-cessively increased by 5.9 percent and 17.9 percent respectively based on the reference blower.The higher blower efficiency obtained by optimization of impeller having splitters is mainly caused by reducing the number of im-peller blades and optimal design of splitters in the blade passage while pressure increase keeps almost the same with the reference blower.For the object function of pressure,pressure increase is obtained at the design and off-design conditions while efficiency keeps higher compared to the reference blower.The enhancement of blow-er performance is due to the reduction of reverse and circulation flows in the blade passage.
基金supported by the Korea Institute of Industrial Technology Evaluation and Planning (ITEP) grant funded by the Ministry of Knowledge Economy(No. 10032063)
文摘Optimal operation of the turbo blowers having an inlet vane has been studied to understand the blowers' operating performance.To analyze three-dimensional flow field in the turbo blowers serially connected,general analysis code,CFX,is introduced in the present work.SST turbulence model is employed to estimate the eddy viscosity.Throughout the numerical analysis,it is found that the flow rates of the turbo blowers can be controlled at the vane angle between 90 (full open condition) degrees and 60 degrees effectively,because pressure loss rapidly increases below 60 degree of a vane angle.Efficiency also has almost the same values from 90 degrees to 60 degrees of a vane angle.It is noted that the distorted inlet velocity generated in the small vane angle makes performance deterioration of the turbo blowers due to the local leading edge separation and the following non-uniform blade loading.