期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
江苏如东地区风速数据分析及风能发电储量 被引量:9
1
作者 姚国平 余岳峰 王志征 《华东电力》 北大核心 2003年第11期10-13,共4页
通过分析江苏如东气象局公布的 2 0 0 2年 1~ 1 2月沿海地区的风速数据及所选用的风电机特性 ,研究了该地区的风能发电储量。在选用最优型的风电机时 ,考虑了计算得出的最优风速 ,并通过对该种风电机进行建模来描述其特性。通过分析计... 通过分析江苏如东气象局公布的 2 0 0 2年 1~ 1 2月沿海地区的风速数据及所选用的风电机特性 ,研究了该地区的风能发电储量。在选用最优型的风电机时 ,考虑了计算得出的最优风速 ,并通过对该种风电机进行建模来描述其特性。通过分析计算 ,得出如东沿海地区 70 m高处的平均风速、风能平均功率密度和所选用风电机的年发电量。 展开更多
关键词 风资源 风速数据分析 风能发电储量 风电机 江苏如东气象局 江苏 如东地区
原文传递
面向无测风区域的复杂地形风场模拟研究 被引量:1
2
作者 王雪松 葛莹 +2 位作者 张杰 肖胜昌 陈科 《地理信息世界》 2020年第2期54-59,67,共7页
由于气象站点的布设受经济、地形、技术等因素限制,使得某风能资源丰富的无测风区域缺少气象站点数据,无法进行风场模拟。针对这一问题,尝试用NCEP再分析风速数据代替传统的气象站点数据,根据NCEP再分析风速数据的栅格数据特点,提出了... 由于气象站点的布设受经济、地形、技术等因素限制,使得某风能资源丰富的无测风区域缺少气象站点数据,无法进行风场模拟。针对这一问题,尝试用NCEP再分析风速数据代替传统的气象站点数据,根据NCEP再分析风速数据的栅格数据特点,提出了一种面向无测风区域的复杂地形风场模拟方法。该风场模拟方法以SRTM DEM数据和NCEP再分析风速数据为数据源,首先通过均值变点分析法获取反映无测风区域地形起伏特点的最佳统计单元,得到无测风区域复杂地形的地形起伏度;然后对Cressman插值方法进行改进,将地形起伏度引入到权重函数中,并根据交叉检验中均方根误差最小原则求解权重函数中参数的最优解;最后将最优解代入权重函数中对风场进行加密。实验结果表明:风场模拟结果与气象站点风速之间的相关系数为0.7782,模拟风速的变化趋势与实测风速基本一致;风电场选址区主要建设在模拟风速较大的地区,十分符合风电场一般建设在风能资源丰富的地方的特点,间接验证面向无测风区域的复杂地形风场模拟方法是有效的。 展开更多
关键词 风场模拟 均值变点分析 Cressman插值方法 NCEP再分析风速数据 复杂地形 无测风区域
下载PDF
Analysis of Wind Power Assessment Based on the WRF Model 被引量:1
3
作者 LI Ji-Hang GUO Zhen-Hai +2 位作者 WANG Hui-Jun LI Ji-Hang WANG Hui-Jun 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第2期126-131,共6页
Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one ... Assessing wind energy is a key step in selecting a site for a wind farm. The accuracy of the assessment is essential for the future operation of the wind farm. There are two main methods for assessing wind power: one is based on observational data and the other relies on mesoscale numerical weather prediction(NWP). In this study, the wind power of the Liaoning coastal wind farm was evaluated using observations from an anemometer tower and simulations by the Weather Research and Forecasting(WRF) model, to see whether the WRF model can produce a valid assessment of the wind power and whether the downscaling process can provide a better evaluation. The paper presents long-term wind data analysis in terms of annual, seasonal, and diurnal variations at the wind farm, which is located on the east coast of Liaoning Province. The results showed that, in spring and summer, the wind speed, wind direction, wind power density, and other main indicators were consistent between the two methods. However, the values of these parameters from the WRF model were significantly higher than the observations from the anemometer tower. Therefore, the causes of the differences between the two methods were further analyzed. There was much more deviation in the original material, National Centers for Environmental Prediction(NCEP) final(FNL) Operational Global Analysis data, in autumn and winter than in spring and summer. As the region is vulnerable to cold-air outbreaks and windy weather in autumn and winter, and the model usually forecasted stronger high or low systems with a longer duration, the predicted wind speed from the WRF model was too large. 展开更多
关键词 wind power assessment anemometer tower data WRF model variance analysis
下载PDF
Self-Similar Characteristic for the Ramp Structures of Wind Speed
4
作者 SONG Zong-Peng HU Fei +1 位作者 XU Jing-Jing CHENG Xue-Ling 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第4期320-323,共4页
Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp struc... Time series of wind speed are composed of large and small ramp structures. Data analysis reveals a power law relation between the linear slope of ramp structures and the time scale. This suggests that these ramp structures of wind speed have a self-similar characteristic. The lower limit of the self-similar scale range was 2 s. The upper limit is unexpectedly large at 27 rain. Data are collected from grassland, city, and lake areas. Although these data have different underlying surfaces, all of them clearly show a power law relation, with slight differences in their power exponents. 展开更多
关键词 ramp structure SELF-SIMILARITY power law time series of wind speed
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部