In the traditional power transmission network planning,deterministic analysis methods are widely used.In such methods,all contingencies are deemed to have the same occurrence probability,which is not reasonable.In thi...In the traditional power transmission network planning,deterministic analysis methods are widely used.In such methods,all contingencies are deemed to have the same occurrence probability,which is not reasonable.In this paper,risk assessment is introduced to the process of transmission network planning considering the probabilistic characteristics of contingencies.Risk indices are given to determine the weak points of the transmission network based on local information,such as bus risk,line overload risk,contingency severity.The indices are calculated by the optimal cost control method based on risk theory,which can help planners to quickly determine weak points in the planning and find solution to them.For simplification,only line overload violation is considered.Finally,the proposed method is validated by an IEEE-RTS test system and a real power system in China from two aspects.In the first case,the original system is evaluated by the proposed method to find the weak points,and then four planning schemes are established,among which the best scheme is selected.In the second case,four initial planning schemes are established by combining the experiences of planners,and after the evaluation by using the proposed method,the best planning scheme is improved based on the information of weak points in the initial schemes,and the risk of improved scheme is reduced from 42 531.86 MW·h per year to 4 431.26 MW·h per year.展开更多
The Rosenzweig-Macarthur Model is used to partially explain Venture Capital investment cycles. Investment opportunities and the experience of the investors, represent the prey and predator respectively. Stability anal...The Rosenzweig-Macarthur Model is used to partially explain Venture Capital investment cycles. Investment opportunities and the experience of the investors, represent the prey and predator respectively. Stability analysis with respect to the interior equilibrium point is performed and dynamics of the system are investigated using numerical simulations and results are presented. The model shows that parameter variation affects the stability of the system and it experiences bifurcations. The results show that stability analysis is useful to provide a Venture Capitalist with the stability ranges of parameters in the system, to improve the quality of the investment process.展开更多
The applied technology of high roller-compacted concrete(RCC) dams is quite complicated because of various risk factors, including the weather condition, supply of concrete aggregate, efficiency of transport machinery...The applied technology of high roller-compacted concrete(RCC) dams is quite complicated because of various risk factors, including the weather condition, supply of concrete aggregate, efficiency of transport machinery and dam surface machinery, and so on. In order to ensure the comprehensiveness, accuracy and objectivity of construction schedule risk analysis, a mathematical model called improved correlated schedule risk analysis model(CSRAM) is proposed in this paper. This model takes into account not only the construction features of high RCC dams, but also the stochastic variations of risk factors with the construction schedule, as well as their comprehensive effects. Using Monte Carlo method to solve this model enables the completion probability of a high RCC dam construction within plan time, and uncertainty analysis of risk factors. Compared with the conventional CSRAM, the improved CSRAM has higher completion probability and more convergent distribution of a simulation period, making analysis results more accurate and closer to actual engineering conditions. Among the ten risk factors selected, efficiency of dam surface machinery and proficiency of workers are found to be of the maximum uncertainty.展开更多
基金Supported by Major State Basic Research Program of China ("973" Program,No. 2009CB219700 and No. 2010CB23460)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20090032110064)
文摘In the traditional power transmission network planning,deterministic analysis methods are widely used.In such methods,all contingencies are deemed to have the same occurrence probability,which is not reasonable.In this paper,risk assessment is introduced to the process of transmission network planning considering the probabilistic characteristics of contingencies.Risk indices are given to determine the weak points of the transmission network based on local information,such as bus risk,line overload risk,contingency severity.The indices are calculated by the optimal cost control method based on risk theory,which can help planners to quickly determine weak points in the planning and find solution to them.For simplification,only line overload violation is considered.Finally,the proposed method is validated by an IEEE-RTS test system and a real power system in China from two aspects.In the first case,the original system is evaluated by the proposed method to find the weak points,and then four planning schemes are established,among which the best scheme is selected.In the second case,four initial planning schemes are established by combining the experiences of planners,and after the evaluation by using the proposed method,the best planning scheme is improved based on the information of weak points in the initial schemes,and the risk of improved scheme is reduced from 42 531.86 MW·h per year to 4 431.26 MW·h per year.
文摘The Rosenzweig-Macarthur Model is used to partially explain Venture Capital investment cycles. Investment opportunities and the experience of the investors, represent the prey and predator respectively. Stability analysis with respect to the interior equilibrium point is performed and dynamics of the system are investigated using numerical simulations and results are presented. The model shows that parameter variation affects the stability of the system and it experiences bifurcations. The results show that stability analysis is useful to provide a Venture Capitalist with the stability ranges of parameters in the system, to improve the quality of the investment process.
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)the National Basic Research Program of China("973"Project)(Grant No.2013CB035906)the National Natural Science Foundation of China(Grant No.51339003)
文摘The applied technology of high roller-compacted concrete(RCC) dams is quite complicated because of various risk factors, including the weather condition, supply of concrete aggregate, efficiency of transport machinery and dam surface machinery, and so on. In order to ensure the comprehensiveness, accuracy and objectivity of construction schedule risk analysis, a mathematical model called improved correlated schedule risk analysis model(CSRAM) is proposed in this paper. This model takes into account not only the construction features of high RCC dams, but also the stochastic variations of risk factors with the construction schedule, as well as their comprehensive effects. Using Monte Carlo method to solve this model enables the completion probability of a high RCC dam construction within plan time, and uncertainty analysis of risk factors. Compared with the conventional CSRAM, the improved CSRAM has higher completion probability and more convergent distribution of a simulation period, making analysis results more accurate and closer to actual engineering conditions. Among the ten risk factors selected, efficiency of dam surface machinery and proficiency of workers are found to be of the maximum uncertainty.