Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formula...Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formulating environmental management strategies yet little attention to this region. In this study, we established an ecological risk assessment index system based on 30 evaluation indices in the categories of hydrometeorology, ecological environment, ground surface disturbance, and society and economy for the Gannan Plateau. An entropy method was used to calculate an index weight,and subsequently the matter-element method was used together with extension theory to establish a matter-element extension model of ecological risk. We assessed the ecological risk in this region by calculating the degree of association between index layer, system layer and target layer, and the cumulative ecological risk index. The degrees of ecological risk for the counties of the region were determined by using Arc GIS which would represent a spatial heterogeneity of the risk grade in production. Our results showed that the areas of high ecological risk were in Zhouqu County and Zhuoni County, and others were of low risk(Hezuo City, Diebu County, Xiahe County and Lintan County) or intermediate risk(Maqu County). The results of the assessment were in accord with the actual observed situation. Thus, our ecological risk assessment index system is appropriate for this region and suggests that high risk counties need a priori ecological protection. Such research could provide a technological support which would potentially prevent or reduce disasters by establishing an ecological barrier to promote the sustainable development of Gannan Plateau.展开更多
Urban soil is the main component of urban ecological systems and the key risk receptor from urbanization. Heavy metal and green pesticide pollutions in urban soils have been widely reported with the expanding of urban...Urban soil is the main component of urban ecological systems and the key risk receptor from urbanization. Heavy metal and green pesticide pollutions in urban soils have been widely reported with the expanding of urbanization. Since urban soil pollution comes from various resources, application of integrated thinking and methods is needed in ecological risk assessment of urban soil pollution. This paper synthetically reviewed the combined pollution of heavy metals and pesticide, and ecological risk assessment, and then proposed some research trends and areas in the future that are required to carry out intensively according to the present situation of environmental pollution and international research fronts.展开更多
Climate change will alter the capacity of carbon sequestration,and the risk assessment of carbon sequestration for terrestrial ecosystems will be helpful to the decision-making for climate change countermeasures and i...Climate change will alter the capacity of carbon sequestration,and the risk assessment of carbon sequestration for terrestrial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations.Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model,each grid of the risk criterion was set by time series trend analysis.Then the risks of carbon sequestration of terrestrial ecosystems were investigated.The results show that,in the IPCCSRES-B2 climate scenario,climate change will bring risks of carbon sequestration,and the high-risk level will dominate terrestrial ecosystems.The risk would expand with the increase of warming degree.By the end of the long-term of this century,about 60% of the whole country will face the risk;Northwest China,mountainous areas in Northeast China,middle and lower reaches plain of Yangtze River areas,Southwest China and Southeast China tend to be extremely vulnerable.Risk levels in most regions are likely to grow with the increase of warming degree,and this increase will mainly occur during the near-term to mid-term.Northwest China will become an area of high risks,and deciduous coniferous forests,temperate mixed forests and desert grassland tend to be extremely vulnerable.展开更多
Drought is usually supposed to be a rainfall deficiency problem. Most studies and practices to mitigate drought disaster are focusing on water development and irrigation, while neglecting that the agriculture system i...Drought is usually supposed to be a rainfall deficiency problem. Most studies and practices to mitigate drought disaster are focusing on water development and irrigation, while neglecting that the agriculture system is a compounded human-natural system. Drought situation and tendency is also driven by human coping strategies. This paper takes Hebei Province in north China as an example, studing the spirally interact process of drought resisting and hydrological ecological feedback. The result shows that large scale water projects construction facilitated irrigation. With improved irrigation, farmers enhanced multiple crop index and land-use intensity greatly and increased the sowing area of water consuming crop, winter wheat. At the same time, both crop yield and gross output are raising steadily. Water demand and depletion in agricultural system increase year by year. This gradually leads to highly dependent on over exploitation of water resources, especially overdraw of groundwater. The process deteriorated the stability of hydrological-ecological system and made the ecological environment drying up. Drying up environment is breeding greater vulnerability and risk of drought in the long term. For sustainable development, integrated drought risk management should be based on the balance between sustainable water supply and water demand. The key is to improve agricultural system's adaptive and resilient capacity to drought.展开更多
The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has pro- vided invaluable insight...The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has pro- vided invaluable insights into the process of evolution by natural selection. Although Trinidadian guppies are now a textbook example of evolution in action, studies have generally categorized predation as a dichotomous variable, representing high or low risk. Yet, ecologists appreciate that community structure and the attendant predation risk vary substantially over space and time. Here, we use data from a longitudinal study of fish assemblages at 16 different sites in the Northern Range to quantify temporal and spatial variation in predation risk. Specifically we ask: 1) Is there evidence for a gradient in predation risk? 2) Does the ranking of sites (by risk) change with the defi- nition of the predator community (in terms of species composition and abundance currency), and 3) Are site rankings consistent over time? We find compelling evidence that sites lie along a contin- uum of risk. However, site rankings along this gradient depend on how predation is quantified in terms of the species considered to be predators and the abundance currency is used. Nonetheless, for a given categorization and currency, rankings are relatively consistent over time. Our study sug- gests that consideration of predation gradients will lead to a more nuanced understanding of the role of predation risk in behavioral and evolutionary ecology. It also emphasizes the need to justify and report the definition of predation risk being used.展开更多
基金supported by the Soft Science Project of Gansu province(1504ZKCA090-1)the National Natural Science Foundation of china(grant nos.41671516,41701623,51369003)+2 种基金the Foundation for Excellent Youth Scholars of NIEER,CAS,National Natural Science Foundation of China(Grant No.41661144046)supported by the Special Foundation for Gansu Province International Scientific Cooperation(1604WKCA002)the Fundamental Research Funds for the Central Universities(lzujbky-2015-K10,lzujbky-2016-862516,lzujbky-2017-it90)
文摘Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formulating environmental management strategies yet little attention to this region. In this study, we established an ecological risk assessment index system based on 30 evaluation indices in the categories of hydrometeorology, ecological environment, ground surface disturbance, and society and economy for the Gannan Plateau. An entropy method was used to calculate an index weight,and subsequently the matter-element method was used together with extension theory to establish a matter-element extension model of ecological risk. We assessed the ecological risk in this region by calculating the degree of association between index layer, system layer and target layer, and the cumulative ecological risk index. The degrees of ecological risk for the counties of the region were determined by using Arc GIS which would represent a spatial heterogeneity of the risk grade in production. Our results showed that the areas of high ecological risk were in Zhouqu County and Zhuoni County, and others were of low risk(Hezuo City, Diebu County, Xiahe County and Lintan County) or intermediate risk(Maqu County). The results of the assessment were in accord with the actual observed situation. Thus, our ecological risk assessment index system is appropriate for this region and suggests that high risk counties need a priori ecological protection. Such research could provide a technological support which would potentially prevent or reduce disasters by establishing an ecological barrier to promote the sustainable development of Gannan Plateau.
文摘Urban soil is the main component of urban ecological systems and the key risk receptor from urbanization. Heavy metal and green pesticide pollutions in urban soils have been widely reported with the expanding of urbanization. Since urban soil pollution comes from various resources, application of integrated thinking and methods is needed in ecological risk assessment of urban soil pollution. This paper synthetically reviewed the combined pollution of heavy metals and pesticide, and ecological risk assessment, and then proposed some research trends and areas in the future that are required to carry out intensively according to the present situation of environmental pollution and international research fronts.
文摘Climate change will alter the capacity of carbon sequestration,and the risk assessment of carbon sequestration for terrestrial ecosystems will be helpful to the decision-making for climate change countermeasures and international climate negotiations.Based on the net ecosystem productivity of terrestrial ecosystems simulated by Atmosphere Vegetation Integrated Model,each grid of the risk criterion was set by time series trend analysis.Then the risks of carbon sequestration of terrestrial ecosystems were investigated.The results show that,in the IPCCSRES-B2 climate scenario,climate change will bring risks of carbon sequestration,and the high-risk level will dominate terrestrial ecosystems.The risk would expand with the increase of warming degree.By the end of the long-term of this century,about 60% of the whole country will face the risk;Northwest China,mountainous areas in Northeast China,middle and lower reaches plain of Yangtze River areas,Southwest China and Southeast China tend to be extremely vulnerable.Risk levels in most regions are likely to grow with the increase of warming degree,and this increase will mainly occur during the near-term to mid-term.Northwest China will become an area of high risks,and deciduous coniferous forests,temperate mixed forests and desert grassland tend to be extremely vulnerable.
基金Acknowledgments China National Natural Science Foundation (No. 41171402) and Doctoral Fund of Hebei Normal University (No. 103237).
文摘Drought is usually supposed to be a rainfall deficiency problem. Most studies and practices to mitigate drought disaster are focusing on water development and irrigation, while neglecting that the agriculture system is a compounded human-natural system. Drought situation and tendency is also driven by human coping strategies. This paper takes Hebei Province in north China as an example, studing the spirally interact process of drought resisting and hydrological ecological feedback. The result shows that large scale water projects construction facilitated irrigation. With improved irrigation, farmers enhanced multiple crop index and land-use intensity greatly and increased the sowing area of water consuming crop, winter wheat. At the same time, both crop yield and gross output are raising steadily. Water demand and depletion in agricultural system increase year by year. This gradually leads to highly dependent on over exploitation of water resources, especially overdraw of groundwater. The process deteriorated the stability of hydrological-ecological system and made the ecological environment drying up. Drying up environment is breeding greater vulnerability and risk of drought in the long term. For sustainable development, integrated drought risk management should be based on the balance between sustainable water supply and water demand. The key is to improve agricultural system's adaptive and resilient capacity to drought.
文摘The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has pro- vided invaluable insights into the process of evolution by natural selection. Although Trinidadian guppies are now a textbook example of evolution in action, studies have generally categorized predation as a dichotomous variable, representing high or low risk. Yet, ecologists appreciate that community structure and the attendant predation risk vary substantially over space and time. Here, we use data from a longitudinal study of fish assemblages at 16 different sites in the Northern Range to quantify temporal and spatial variation in predation risk. Specifically we ask: 1) Is there evidence for a gradient in predation risk? 2) Does the ranking of sites (by risk) change with the defi- nition of the predator community (in terms of species composition and abundance currency), and 3) Are site rankings consistent over time? We find compelling evidence that sites lie along a contin- uum of risk. However, site rankings along this gradient depend on how predation is quantified in terms of the species considered to be predators and the abundance currency is used. Nonetheless, for a given categorization and currency, rankings are relatively consistent over time. Our study sug- gests that consideration of predation gradients will lead to a more nuanced understanding of the role of predation risk in behavioral and evolutionary ecology. It also emphasizes the need to justify and report the definition of predation risk being used.