Effects of operating conditions and device's geometrical sizes on geometrical properties of wall-attaching transonic jet between two parallel plat plates are numerically simulated. Conclusions are as follows: 1) U...Effects of operating conditions and device's geometrical sizes on geometrical properties of wall-attaching transonic jet between two parallel plat plates are numerically simulated. Conclusions are as follows: 1) Upriver part of the wall-attaching jet's center streamline is in good accordance with parabola; 2) When both gas inlet pressure and outlet pressure as well as their ratio are not too high ( the outlet pressure is less than 10 MPa and the pressure ratio is less than 3), the center streamlines of the wall-attaching jet with the same pressure ratio coincide with each other very well, and the deflection degree of the center streamline decreases with rise of the pressure ratio; 3) The deflection degree of the jet's center streamline decreases with either broadening of nozzle's throat or rise of wall offset; 4) With rise of the pressure ratio, attachment distance of the jet increases, but the increase rate descends; 5) The attachment distance ascends with rise of either the nozzle's throat or the wall offset.展开更多
This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative pictu...This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative picture of the main features of interest for impingement type of flows. The experiments were carried out for a Reynolds number based on the jet exit conditions of Rej = 4.3 × 10^4, an impingement height of 20.1 jet diameters and for a velocity ratio between the jet exit and the crossflow VR = V/Uo of 22.5. The rear jet is located at S = 6 D downstream of the first jet. The results show a large penetration of the first (upstream)jet that is deflected by the crossflow and impinges on the ground, giving rise to a ground vortex due to the collision of the radial wall and the crossflow that wraps around the impinging point like a scarf. The rear jet (located downstream) it is not so affected by the crossflow in terms of deflection, but due to the downstream wall jet that flows radially from the impinging point of the first jet it does not reach the ground. The results indicate a new flow pattern not yet reported so far, that for a VSTOL aircraft operating in ground vicinity with front wind or small forward movement may result in enhanced under pressures in the aft part of the aircraft causing a suction down force and a change of the pitching moment towards the ground.展开更多
基金Chinese 863 National Program Foundation(No.2006AA05Z216)
文摘Effects of operating conditions and device's geometrical sizes on geometrical properties of wall-attaching transonic jet between two parallel plat plates are numerically simulated. Conclusions are as follows: 1) Upriver part of the wall-attaching jet's center streamline is in good accordance with parabola; 2) When both gas inlet pressure and outlet pressure as well as their ratio are not too high ( the outlet pressure is less than 10 MPa and the pressure ratio is less than 3), the center streamlines of the wall-attaching jet with the same pressure ratio coincide with each other very well, and the deflection degree of the center streamline decreases with rise of the pressure ratio; 3) The deflection degree of the jet's center streamline decreases with either broadening of nozzle's throat or rise of wall offset; 4) With rise of the pressure ratio, attachment distance of the jet increases, but the increase rate descends; 5) The attachment distance ascends with rise of either the nozzle's throat or the wall offset.
文摘This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative picture of the main features of interest for impingement type of flows. The experiments were carried out for a Reynolds number based on the jet exit conditions of Rej = 4.3 × 10^4, an impingement height of 20.1 jet diameters and for a velocity ratio between the jet exit and the crossflow VR = V/Uo of 22.5. The rear jet is located at S = 6 D downstream of the first jet. The results show a large penetration of the first (upstream)jet that is deflected by the crossflow and impinges on the ground, giving rise to a ground vortex due to the collision of the radial wall and the crossflow that wraps around the impinging point like a scarf. The rear jet (located downstream) it is not so affected by the crossflow in terms of deflection, but due to the downstream wall jet that flows radially from the impinging point of the first jet it does not reach the ground. The results indicate a new flow pattern not yet reported so far, that for a VSTOL aircraft operating in ground vicinity with front wind or small forward movement may result in enhanced under pressures in the aft part of the aircraft causing a suction down force and a change of the pitching moment towards the ground.