The wavelength dependence of photoelectron angular distributions (PADs) of two-photon detachment of Cu^- has been directly studied by using the photoelectron map imaging. Results show that for the laser field intens...The wavelength dependence of photoelectron angular distributions (PADs) of two-photon detachment of Cu^- has been directly studied by using the photoelectron map imaging. Results show that for the laser field intensity of 6.0×10^10W/cm^2, PADs exhibit dramatic change with the external field wavelength. Comparison between the experimental observation and the lowest-order perturbation theory prediction indicates that the pattern of PADs can be explained by the interference of the s and d partial waves in the final state. Relative contri- butions of s and d partial waves in the two-photon detachment at different laser wavelengths are obtained.展开更多
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low e...A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.展开更多
We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target byan intense femtosecond laser pulse.Electrons in the preplasma are trapped and accelerated by the ponderomoti...We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target byan intense femtosecond laser pulse.Electrons in the preplasma are trapped and accelerated by the ponderomotive forceas well as the wake field.Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by thetarget,electrons trapped in the laser pules can be extracted and move forward inertially.The energetic electron bunchin the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance.There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given.The maximum electron energy is inverse proportion to the preplasma density.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21073188).
文摘The wavelength dependence of photoelectron angular distributions (PADs) of two-photon detachment of Cu^- has been directly studied by using the photoelectron map imaging. Results show that for the laser field intensity of 6.0×10^10W/cm^2, PADs exhibit dramatic change with the external field wavelength. Comparison between the experimental observation and the lowest-order perturbation theory prediction indicates that the pattern of PADs can be explained by the interference of the s and d partial waves in the final state. Relative contri- butions of s and d partial waves in the two-photon detachment at different laser wavelengths are obtained.
文摘A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10875015,10834008,10963002the 973 Program under Grant No.2006CB806004Educational Commission of Jiangxi Province of China under Grant No.GJJ10052
文摘We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target byan intense femtosecond laser pulse.Electrons in the preplasma are trapped and accelerated by the ponderomotive forceas well as the wake field.Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by thetarget,electrons trapped in the laser pules can be extracted and move forward inertially.The energetic electron bunchin the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance.There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given.The maximum electron energy is inverse proportion to the preplasma density.