The purpose of this study is to develop a twin wheel creep-feed grinding machine using continuous dressing to machine precise axisymmetric turbine blades that have been difficult to machine using a conventional creep-...The purpose of this study is to develop a twin wheel creep-feed grinding machine using continuous dressing to machine precise axisymmetric turbine blades that have been difficult to machine using a conventional creep-feed machine.In order to develop such a machine,3D-modeling and machine simulations were performed and a twin wheel creep-feed grinding machine was manufactured.Furthermore,the axisymmetric precision of the machined workpieces through practical machining was evaluated and the quality of the continuous dressing effect of the developed machine was established.In addition,experimental considerations for a proper dresser-to-wheel speed ratio and proper feed rate of the dresser were carried out.As a result,a twin wheel creep-feed grinding machine with continuous dressing is developed through machine simulation,manufacturing and performance evaluation.Optimum condition for the dresser feed rate is 0.3μm/rev.In cases of large dressor-to-wheel speed ratio,grinding efficiency can be enhanced,but the surface roughness shows a conflicting trend.Developed twin wheel creep-feed grinding machine has satisfactory appraisal with regard to surface roughness,flatness,and parallelism.Satisfactory surface roughness below 0.1μm can be obtained for the blade of aircraft.However,in order to perform precise machining,it is necessary to improve the structure of the twin wheel creep-feed grinding machine.展开更多
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example an...To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.展开更多
This paper introduces the Chinese"Dove"——A practical application system of bird-mimetic air vehicles developed for more than a decade by the Institute of Flight Vehicle Innovation of Northwest Polytechnic ...This paper introduces the Chinese"Dove"——A practical application system of bird-mimetic air vehicles developed for more than a decade by the Institute of Flight Vehicle Innovation of Northwest Polytechnic University(NWPU)in China.Firstly,the main components,flight capability and flight verification of the Chinese"Dove"are presented.Then,the methods for the aerodynamic simulation and wind tunnel experiments are put forward.Secondly,the design of high-lift and high-thrust flexible flapping wings,a series of flapping mechanisms,gust-resistance layout and micro flight control/navigation system are presented.Some future studies on the application system of bionic micro air vehicles are given,including observation of natural flight creatures,aerodynamics in flight,mechanical and new material driving systems,structural mechanics,flight mechanics,and the information perception and intelligent decision-making control,which are related to research of flight bioinformatic perception and brain science.Finally,some application examples of complex flapping movements,active/passive deformation of bird wings,new low-energy motion-driven system,bionic intelligent decision-making and control/navigation are discussed.展开更多
The performance of slowed-rotor compound aircraft,particularly at high-speed flight condition,is examined.The forward flight performance calculation model of the composite helicopter is established,and the appropriate...The performance of slowed-rotor compound aircraft,particularly at high-speed flight condition,is examined.The forward flight performance calculation model of the composite helicopter is established,and the appropriate wing and propeller parameters are determined.The predicted performance of isolated propeller,wing and rotor combination is examined.Three kinds of tip speed and a range of load share setting are investigated.Propeller bearing 80%of the thrust with wing sharing lift is found to be the best condition to have better performance and the maximum L/D for maximum forward speed.Detailed rotor,propeller,and wing performance are examined for sea level,1000 m,and 2000 m cruise altitude.Rotor,propeller,and wing power are found to be largely from profile drag,except at low speed where the wing is near stall.Increased elevation offloads lift from the rotor to the wing,dropping the total power required and increasing the maximum speed limit over 400 km/h.展开更多
This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing ski...This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.展开更多
The purpose of the study is to assess what the influence of the distance of the gap is between the wing and slotted flap on the aerodynamic characteristics of ultra-light aircraft wing when the flap is retracted. It h...The purpose of the study is to assess what the influence of the distance of the gap is between the wing and slotted flap on the aerodynamic characteristics of ultra-light aircraft wing when the flap is retracted. It has been elected numerical approach to the study and it is been realized through applied numerical model of the wing airfoil NACA 2412 for three different lengths of slotted gap size, whose length is expressed as percentages of the airfoil chord. The code ANSYS FLUENT has been applied, as it has been determined RANS (Reynolds-averaged Navier-Stokes) equations and DES (detached-eddy simulation) turbulent model has been used.展开更多
the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simu...the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings.展开更多
Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the grou...Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.展开更多
In 1907, aviation pioneer Santos-Dumont had the idea of building a very light airplane. He designed and built the SD 19, the Demoiselle, an aircraft with a 6 meter wing span and a 24 HP engine of his own design. The D...In 1907, aviation pioneer Santos-Dumont had the idea of building a very light airplane. He designed and built the SD 19, the Demoiselle, an aircraft with a 6 meter wing span and a 24 HP engine of his own design. The Demoiselle was very successful in flying and, became very popular and its development continued as SD20, SD21 and SD22 (his last airplane). The influence of the Demoiselle on design principles of light aircraft and general aviation were studied in this work, using statistical entropy, The designs number 20 and 22 may be considered dominant and influenced the design principles of light aircraft and general aviation.展开更多
Composite wing static aeroelasticity was analyzed through a loosely coupled method and the effects on composite wing characteristics under different flight attitudes were presented. Structural analysis and aerodynamic...Composite wing static aeroelasticity was analyzed through a loosely coupled method and the effects on composite wing characteristics under different flight attitudes were presented. Structural analysis and aerodynamic analysis were carried out through finite element method (FEM) software NASTRAN and computational fluid dynamics (CFD) software FLUENT, respectively. Correlative data transfer and mesh regenerate procedure were applied to couple the results of computational structure dynamics (CSD) and CFD. After static aeroelasticity analysis under different flight attitudes, it can be seen that lift increases with the increase of flight speed and the incremental value enlarges gradually in both rigid and elastic wings. Lift presents a linear increment relationship with the increase of attack angle when the flight speed is 0.4Ma or 0.6Ma, but nonlinear increment in elastic wing when flight speed is 0.8Ma. On the effect of aeroelasticity, the maximum of deformation increases with the increase of flight speed and attack angle, and the incremental value decreases with the increase of flight speed while uniform with different attack angles. The results provide a reference for engineering applications.展开更多
In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupli...In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.展开更多
In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of...In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of the device was designed by mimicking the morphology of a living gannet,and the folding wings were realized by the mechanism of variable swept back wing.Then,the radial loads of the wing root were obtained under the conditions of different dropping heights,different sweptback angles and different water-entry inclination angles(i.e.,the angle between the longitudinal body axis and the water surface),and the relationships between the peak radial load and the above three parameters were analyzed and discussed respectively.In the studied areas,the minimum peak radial load of the pivot joint is 50.93 N,while the maximum reaches up to1135.00 N.The largest peak load would be generated for the situation of vertical water entry and zero wing sweptback angle.And it is of great significance to choose the three parameters properly to reduce the pivot joint’s radial load,i.e.,larger wing sweptback angle,smaller dropping height and water-entry inclination angle.It is also concluded that the peak radial load on the wing root is closely linear with the water-entry dropping height and the wing sweptback angle with a significant correlation.Eventually,the relationship between the wing load and the dropping height,water-entry inclination angle or wing sweptback angle,could be used to calculate the wing load about plunge-diving of a submersible aircraft,and the conclusions reveal the wing load characteristic of the gannet’s plunge process for the biologists.展开更多
A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive h...A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.展开更多
A linearization method and an engineering approach for the geometric nonlinear aeroelastic stability analysis of the very flexi- ble aircraft with high-aspect-ratio wings are established based on the little dynamic pe...A linearization method and an engineering approach for the geometric nonlinear aeroelastic stability analysis of the very flexi- ble aircraft with high-aspect-ratio wings are established based on the little dynamic perturbation assumption.The engineering practicability of the method is validated by a complex example.For a high-altitude long-endurance unmanned aircraft,the nonlinear static deformations under straight flight and the gust loads are calculated.At the corresponding nonlinear equilibrium state,the complete aircraft is linearized dynamically and the vibration modes are calculated considering the large deformation effects.Then the unsteady aerodynamics are calculated by the double lattice method.Finally,the aeroelastic stability of the complete aircraft is analyzed.The results are compared with the traditional linear calculation.The work shows that the geometric nonlinearity induced by the large structural deformation leads to the motion coupling of the wing chordwise bending and the torsion,which changes the mode frequencies and mode shapes.This factors change the aeroelastic coupling relationship of the flexible modes leading to the decrease of the flutter speed.The traditional linear method would give not only an imprecise flutter speed but also a possible dramatic mistake on the stability.Hence,for a high-altitude long-endurance unmanned aircraft with high-aspect-ratio wings,or a similar very flexible aircraft,the geometric nonlinear aeroelastic analysis should be a necessary job in engineering practice.展开更多
An analytical model for aeroelastic stability of the wing/pylon/rotor coupled system with elastic bending-twist coupling wing for tiltrotor aircraft in forward flight has been established in this paper. The investigat...An analytical model for aeroelastic stability of the wing/pylon/rotor coupled system with elastic bending-twist coupling wing for tiltrotor aircraft in forward flight has been established in this paper. The investigation is focused on the effectiveness of the wing elastic bending-twist couplings provided by composite wing beam on the aeroelastic stability for the wing/pylon/rotor coupled system. By introducing the different wing elastic bending-twist couplings into the Boeing’s test model, the aeroelastic stability of the Boeing’s test model with different wing elastic bending-twist couplings has been analyzed. The numerical re-sults indicate that the negative wing beamwise bending-twist elastic coupling (the wing upward beamwise bending engenders the nose-down torsion of the wing section) can saliently enhance the stability of the wing beamwise bending modal. The posi-tive wing chordwise bending-twist elastic coupling (the wing forward chordwise bending engenders the nose-down torsion of the wing section) has a great benefit for increasing the stability of the wing chordwise bending modal.展开更多
The application of actuator made of piezoelectric material,particularly the advanced piezoelectric fiber composite due to the rapid development of smart materials and structures and active control technology in aviati...The application of actuator made of piezoelectric material,particularly the advanced piezoelectric fiber composite due to the rapid development of smart materials and structures and active control technology in aviation and aerospace industry,to aircraft for performance enhancements such as flight control,aerodynamic force optimization,structure weight reduction,and overall aircraft design represents a new challenge to researches.It is considered as one of the key technologies for developing future flight vehicle.An approach with virtual control surface instead of conventional control surface to control aerodynamic force distribution and flight performance by use of piezoelectric fiber composite actuators distributed on wing surface is presented here.Particularly,the design and implementation of increasing lift force,providing roll maneuver,decreasing induced drag and wing root moment in different flight environments by the same structure control platform are studied.The control effect and sensitivity are examined quantitatively.Generally speaking,better control effect can be obtained by making better use of aeroelastic character to enlarge the actuation strain produced by piezoelectric material.展开更多
基金Work supported by the Second Stage of Brain Korea 21 Project
文摘The purpose of this study is to develop a twin wheel creep-feed grinding machine using continuous dressing to machine precise axisymmetric turbine blades that have been difficult to machine using a conventional creep-feed machine.In order to develop such a machine,3D-modeling and machine simulations were performed and a twin wheel creep-feed grinding machine was manufactured.Furthermore,the axisymmetric precision of the machined workpieces through practical machining was evaluated and the quality of the continuous dressing effect of the developed machine was established.In addition,experimental considerations for a proper dresser-to-wheel speed ratio and proper feed rate of the dresser were carried out.As a result,a twin wheel creep-feed grinding machine with continuous dressing is developed through machine simulation,manufacturing and performance evaluation.Optimum condition for the dresser feed rate is 0.3μm/rev.In cases of large dressor-to-wheel speed ratio,grinding efficiency can be enhanced,but the surface roughness shows a conflicting trend.Developed twin wheel creep-feed grinding machine has satisfactory appraisal with regard to surface roughness,flatness,and parallelism.Satisfactory surface roughness below 0.1μm can be obtained for the blade of aircraft.However,in order to perform precise machining,it is necessary to improve the structure of the twin wheel creep-feed grinding machine.
基金Project(2013AA063903)supported by High-tech Research and Development Program of China
文摘To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.
基金supported by the National Key Research and Development Program of China(No.2017YFB1300102)the National Natural Science Foundation of China(No.U1613227)。
文摘This paper introduces the Chinese"Dove"——A practical application system of bird-mimetic air vehicles developed for more than a decade by the Institute of Flight Vehicle Innovation of Northwest Polytechnic University(NWPU)in China.Firstly,the main components,flight capability and flight verification of the Chinese"Dove"are presented.Then,the methods for the aerodynamic simulation and wind tunnel experiments are put forward.Secondly,the design of high-lift and high-thrust flexible flapping wings,a series of flapping mechanisms,gust-resistance layout and micro flight control/navigation system are presented.Some future studies on the application system of bionic micro air vehicles are given,including observation of natural flight creatures,aerodynamics in flight,mechanical and new material driving systems,structural mechanics,flight mechanics,and the information perception and intelligent decision-making control,which are related to research of flight bioinformatic perception and brain science.Finally,some application examples of complex flapping movements,active/passive deformation of bird wings,new low-energy motion-driven system,bionic intelligent decision-making and control/navigation are discussed.
文摘The performance of slowed-rotor compound aircraft,particularly at high-speed flight condition,is examined.The forward flight performance calculation model of the composite helicopter is established,and the appropriate wing and propeller parameters are determined.The predicted performance of isolated propeller,wing and rotor combination is examined.Three kinds of tip speed and a range of load share setting are investigated.Propeller bearing 80%of the thrust with wing sharing lift is found to be the best condition to have better performance and the maximum L/D for maximum forward speed.Detailed rotor,propeller,and wing performance are examined for sea level,1000 m,and 2000 m cruise altitude.Rotor,propeller,and wing power are found to be largely from profile drag,except at low speed where the wing is near stall.Increased elevation offloads lift from the rotor to the wing,dropping the total power required and increasing the maximum speed limit over 400 km/h.
文摘This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.
文摘The purpose of the study is to assess what the influence of the distance of the gap is between the wing and slotted flap on the aerodynamic characteristics of ultra-light aircraft wing when the flap is retracted. It has been elected numerical approach to the study and it is been realized through applied numerical model of the wing airfoil NACA 2412 for three different lengths of slotted gap size, whose length is expressed as percentages of the airfoil chord. The code ANSYS FLUENT has been applied, as it has been determined RANS (Reynolds-averaged Navier-Stokes) equations and DES (detached-eddy simulation) turbulent model has been used.
文摘the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings.
基金Supported by Yildiz Technical University Scientific Research Projects Coordination Department under Project No.2013-10-01-KAP02
文摘Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.
文摘In 1907, aviation pioneer Santos-Dumont had the idea of building a very light airplane. He designed and built the SD 19, the Demoiselle, an aircraft with a 6 meter wing span and a 24 HP engine of his own design. The Demoiselle was very successful in flying and, became very popular and its development continued as SD20, SD21 and SD22 (his last airplane). The influence of the Demoiselle on design principles of light aircraft and general aviation were studied in this work, using statistical entropy, The designs number 20 and 22 may be considered dominant and influenced the design principles of light aircraft and general aviation.
基金Project(50905142) supported by the National Natural Science Foundation of ChinaProject(2009JQ1006) supported by the Natural Science Foundation of Shaanxi Province,China
文摘Composite wing static aeroelasticity was analyzed through a loosely coupled method and the effects on composite wing characteristics under different flight attitudes were presented. Structural analysis and aerodynamic analysis were carried out through finite element method (FEM) software NASTRAN and computational fluid dynamics (CFD) software FLUENT, respectively. Correlative data transfer and mesh regenerate procedure were applied to couple the results of computational structure dynamics (CSD) and CFD. After static aeroelasticity analysis under different flight attitudes, it can be seen that lift increases with the increase of flight speed and the incremental value enlarges gradually in both rigid and elastic wings. Lift presents a linear increment relationship with the increase of attack angle when the flight speed is 0.4Ma or 0.6Ma, but nonlinear increment in elastic wing when flight speed is 0.8Ma. On the effect of aeroelasticity, the maximum of deformation increases with the increase of flight speed and attack angle, and the incremental value decreases with the increase of flight speed while uniform with different attack angles. The results provide a reference for engineering applications.
文摘In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.
基金supported by the National Natural Science Foundation of China(Grant No.51005008)
文摘In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of the device was designed by mimicking the morphology of a living gannet,and the folding wings were realized by the mechanism of variable swept back wing.Then,the radial loads of the wing root were obtained under the conditions of different dropping heights,different sweptback angles and different water-entry inclination angles(i.e.,the angle between the longitudinal body axis and the water surface),and the relationships between the peak radial load and the above three parameters were analyzed and discussed respectively.In the studied areas,the minimum peak radial load of the pivot joint is 50.93 N,while the maximum reaches up to1135.00 N.The largest peak load would be generated for the situation of vertical water entry and zero wing sweptback angle.And it is of great significance to choose the three parameters properly to reduce the pivot joint’s radial load,i.e.,larger wing sweptback angle,smaller dropping height and water-entry inclination angle.It is also concluded that the peak radial load on the wing root is closely linear with the water-entry dropping height and the wing sweptback angle with a significant correlation.Eventually,the relationship between the wing load and the dropping height,water-entry inclination angle or wing sweptback angle,could be used to calculate the wing load about plunge-diving of a submersible aircraft,and the conclusions reveal the wing load characteristic of the gannet’s plunge process for the biologists.
文摘A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.
基金supported by the National Natural Science Foundation of China(Grant Nos.90716006,10902006)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20091102110015)
文摘A linearization method and an engineering approach for the geometric nonlinear aeroelastic stability analysis of the very flexi- ble aircraft with high-aspect-ratio wings are established based on the little dynamic perturbation assumption.The engineering practicability of the method is validated by a complex example.For a high-altitude long-endurance unmanned aircraft,the nonlinear static deformations under straight flight and the gust loads are calculated.At the corresponding nonlinear equilibrium state,the complete aircraft is linearized dynamically and the vibration modes are calculated considering the large deformation effects.Then the unsteady aerodynamics are calculated by the double lattice method.Finally,the aeroelastic stability of the complete aircraft is analyzed.The results are compared with the traditional linear calculation.The work shows that the geometric nonlinearity induced by the large structural deformation leads to the motion coupling of the wing chordwise bending and the torsion,which changes the mode frequencies and mode shapes.This factors change the aeroelastic coupling relationship of the flexible modes leading to the decrease of the flutter speed.The traditional linear method would give not only an imprecise flutter speed but also a possible dramatic mistake on the stability.Hence,for a high-altitude long-endurance unmanned aircraft with high-aspect-ratio wings,or a similar very flexible aircraft,the geometric nonlinear aeroelastic analysis should be a necessary job in engineering practice.
文摘An analytical model for aeroelastic stability of the wing/pylon/rotor coupled system with elastic bending-twist coupling wing for tiltrotor aircraft in forward flight has been established in this paper. The investigation is focused on the effectiveness of the wing elastic bending-twist couplings provided by composite wing beam on the aeroelastic stability for the wing/pylon/rotor coupled system. By introducing the different wing elastic bending-twist couplings into the Boeing’s test model, the aeroelastic stability of the Boeing’s test model with different wing elastic bending-twist couplings has been analyzed. The numerical re-sults indicate that the negative wing beamwise bending-twist elastic coupling (the wing upward beamwise bending engenders the nose-down torsion of the wing section) can saliently enhance the stability of the wing beamwise bending modal. The posi-tive wing chordwise bending-twist elastic coupling (the wing forward chordwise bending engenders the nose-down torsion of the wing section) has a great benefit for increasing the stability of the wing chordwise bending modal.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-01-B05)the National Natural Science Foundation of China(Grant No.10772183)the Intellectual Innovation Project of the Chinese Academy of Sciences(Grant No.KJCX2-YW-L07)
文摘The application of actuator made of piezoelectric material,particularly the advanced piezoelectric fiber composite due to the rapid development of smart materials and structures and active control technology in aviation and aerospace industry,to aircraft for performance enhancements such as flight control,aerodynamic force optimization,structure weight reduction,and overall aircraft design represents a new challenge to researches.It is considered as one of the key technologies for developing future flight vehicle.An approach with virtual control surface instead of conventional control surface to control aerodynamic force distribution and flight performance by use of piezoelectric fiber composite actuators distributed on wing surface is presented here.Particularly,the design and implementation of increasing lift force,providing roll maneuver,decreasing induced drag and wing root moment in different flight environments by the same structure control platform are studied.The control effect and sensitivity are examined quantitatively.Generally speaking,better control effect can be obtained by making better use of aeroelastic character to enlarge the actuation strain produced by piezoelectric material.