期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
抬升角对食蚜蝇飞行动稳定性的影响
1
作者 许娜 周帅至 牟晓蕾 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第7期1372-1378,共7页
抬升角的存在对昆虫飞行时的气动力会产生不同程度的影响,其对昆虫飞行动稳定性的影响也非常值得探索。首先,求解Navier-Stokes方程得到了有抬升角时食蚜蝇的纵向与横向稳定性导数;然后,用特征模态分析法研究其动稳定性。结果表明:有抬... 抬升角的存在对昆虫飞行时的气动力会产生不同程度的影响,其对昆虫飞行动稳定性的影响也非常值得探索。首先,求解Navier-Stokes方程得到了有抬升角时食蚜蝇的纵向与横向稳定性导数;然后,用特征模态分析法研究其动稳定性。结果表明:有抬升角时,在侧向来流作用下食蚜蝇的滚转力矩对应的导数比无抬升角时明显减小,而其余导数无明显变化,导数减小是由于抬升角的存在使得有侧向来流时因左右翅举力不同产生的正向滚转力矩数值明显减小,而由侧向力产生的负向滚转力矩数值略有增大,从而使得其总的负向滚转力矩数值增大;但有侧向来流时滚转力矩所对应导数的减小并未引起食蚜蝇飞行动稳定性的改变,其纵向和横向的特征模态仍与无抬升角时相同。 展开更多
关键词 抬升角 食蚜蝇 飞行动稳定性 NAVIER-STOKES方程 运动模态
下载PDF
The stability analysis of rolling motion of hypersonic vehicles and its validations 被引量:8
2
作者 YE YouDa ZHAO ZhongLiang +1 位作者 TIAN Hao ZHANG XianFeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第12期2194-2204,共11页
The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflecte... The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflected rolling motions are improved. The out- comes can serve as the basis for further study regarding the influence of pitching and lateral motion on the stability of rolling motion. To validate the theoretical results, numerical simulations were do^e for the rolling motion of two hypersonic vehicles with typical configurations. Also, wind tunnel experiments for four aircraft models with typical configurations have been done. The results show that: 1) there exist two dynamic patterns of the rolling motion under statically stable condition. The first one is point attractor, for which the motion of aircraft returns to the original state. The second is periodic attractor, for which the aircraft rolls periodically. 2) Under statically unstable condition, there exist three dynamic patterns of rolling motion, namely, the point attractor, periodic attractor around deflected state of rolling motion, and double periodic attractors or chaotic attrac- tors. 展开更多
关键词 rolling motion stability criterion numerical simulation wind tunnel experiment
原文传递
The stability of rolling motion of hypersonic vehicles with slender configuration under pitching maneuvering 被引量:4
3
作者 YE YouDa TIAN Hao ZHANG XiaFeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第6期86-94,共9页
The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitud... The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitudinal axis is much smaller than those around the other two axes,resulting in strong coupling of rotations around the three axes.Thus,the stability analysis of rolling motion for such flying vehicles is more complicated than those for conventional aircrafts,and there is no available result of stability analysis which can readily be applied to such cases.This paper is mainly concerned with the stated problem.Considering the practical situation,our investigation is targeted a slightly simpler problem,namely the rolling stability of flying vehicle under known pitching motion.The stability criterion of rolling motion is obtained with and without lateral motions.We also conducted numerical simulation for the pitching-rolling coupled motions of flying vehicles by solving Navier-Stokes equations coupled with dynamic equations of flight.The results of simulation agree well with those of theoretical analysis and experiments. 展开更多
关键词 STABILITY rolling motion pitching motion hypersonic flying vehicle
原文传递
Stream Surface Theory of Bird-like Flapping Flight
4
作者 WANG Huishe ZHU Junqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第5期417-426,共10页
Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equiv... Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square. 展开更多
关键词 flapping flight TURBOMACHINERY stream surface non-orthogonal curvilinear coordinate system wing flexibility
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部