In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in th...In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.展开更多
In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupli...In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.展开更多
The UAVs (unmanned aerial vehicles) exist in various sizes. One of the most interesting niches concerns the UAVs of moderate size (〈 1 m), also called MAVs (micro air vehicles). An aerodynamic study of the ULB ...The UAVs (unmanned aerial vehicles) exist in various sizes. One of the most interesting niches concerns the UAVs of moderate size (〈 1 m), also called MAVs (micro air vehicles). An aerodynamic study of the ULB (Universite Libre de Bruxelles) developed a ducted rotor MAV using the results of full-scale wind tunnel tests that allowed the determination of the platform speed envelope, the power requirements and the endurance characteristics for ISA sea level conditions. Although the ULB MAV appears similar to other ducted-rotor concepts, it fundamentally differs from them as it uses the downwash of a single rotor to compensate the electric motor main rotor torque and to achieve full control around the roll, pitch and yaw axes. This paper explains in detail the components layout of the MAV and the aerodynamic characteristics of the anti-torque blades.展开更多
Y2002-63330-3393 0224381具体非破坏性评价的新发展=Recent developments inconcrete nondestructive evaluation[会,英]/Bilgutay,N. & Popovics,J.//The 2001 IEEE International Confer-ence on Acoustics,Speech,and Signal Pr...Y2002-63330-3393 0224381具体非破坏性评价的新发展=Recent developments inconcrete nondestructive evaluation[会,英]/Bilgutay,N. & Popovics,J.//The 2001 IEEE International Confer-ence on Acoustics,Speech,and Signal Processing Vol.Ⅵ of Ⅵ.—3393~3396(HE)Y2002-63330-3397 0224382非破坏性评价的不变性算法=Invariance algorithms fornondestructive evaluation[会,英]/Mandayam,S.A.//The 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing Vol.ⅥofⅥ.—3397~3400(HE)展开更多
文摘In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.
文摘In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.
文摘The UAVs (unmanned aerial vehicles) exist in various sizes. One of the most interesting niches concerns the UAVs of moderate size (〈 1 m), also called MAVs (micro air vehicles). An aerodynamic study of the ULB (Universite Libre de Bruxelles) developed a ducted rotor MAV using the results of full-scale wind tunnel tests that allowed the determination of the platform speed envelope, the power requirements and the endurance characteristics for ISA sea level conditions. Although the ULB MAV appears similar to other ducted-rotor concepts, it fundamentally differs from them as it uses the downwash of a single rotor to compensate the electric motor main rotor torque and to achieve full control around the roll, pitch and yaw axes. This paper explains in detail the components layout of the MAV and the aerodynamic characteristics of the anti-torque blades.
文摘Y2002-63330-3393 0224381具体非破坏性评价的新发展=Recent developments inconcrete nondestructive evaluation[会,英]/Bilgutay,N. & Popovics,J.//The 2001 IEEE International Confer-ence on Acoustics,Speech,and Signal Processing Vol.Ⅵ of Ⅵ.—3393~3396(HE)Y2002-63330-3397 0224382非破坏性评价的不变性算法=Invariance algorithms fornondestructive evaluation[会,英]/Mandayam,S.A.//The 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing Vol.ⅥofⅥ.—3397~3400(HE)