This paper introduces the Chinese"Dove"——A practical application system of bird-mimetic air vehicles developed for more than a decade by the Institute of Flight Vehicle Innovation of Northwest Polytechnic ...This paper introduces the Chinese"Dove"——A practical application system of bird-mimetic air vehicles developed for more than a decade by the Institute of Flight Vehicle Innovation of Northwest Polytechnic University(NWPU)in China.Firstly,the main components,flight capability and flight verification of the Chinese"Dove"are presented.Then,the methods for the aerodynamic simulation and wind tunnel experiments are put forward.Secondly,the design of high-lift and high-thrust flexible flapping wings,a series of flapping mechanisms,gust-resistance layout and micro flight control/navigation system are presented.Some future studies on the application system of bionic micro air vehicles are given,including observation of natural flight creatures,aerodynamics in flight,mechanical and new material driving systems,structural mechanics,flight mechanics,and the information perception and intelligent decision-making control,which are related to research of flight bioinformatic perception and brain science.Finally,some application examples of complex flapping movements,active/passive deformation of bird wings,new low-energy motion-driven system,bionic intelligent decision-making and control/navigation are discussed.展开更多
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope...The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.展开更多
Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obt...Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obtained through analyzing the certainty and uncertainty of fuzzy membership functions,which were designed based on well-known Hamming distance.It was applied to the fault detection of primary control surface stuck of uninhabited aerial vehicle(UAV).At post-failure control surface,if the UAV is controllable and trimmable using other control surfaces,the UAV is able to fly or return to the safety region through reconfiguration of flight control system.To detect the fault,similarity measure computations were carried out.This result could be applicable with the real-time parameter estimation method.By monitoring the value of coefficients due to the control surface deviation,it becomes aware that the control surface fault occurs or not.The control surface stuck position and value were separated by comparing the trim value with the reference value.This is the advantage of increasing in reliability without adding sensors or with additional low cost.展开更多
Objective: This study aims to establish a method for highly parallel multiplexed detection of genetic mutations in Chinese lung cancer samples through Agena i PLEX chemistry and matrix-assisted laser desorption ioniza...Objective: This study aims to establish a method for highly parallel multiplexed detection of genetic mutations in Chinese lung cancer samples through Agena i PLEX chemistry and matrix-assisted laser desorption ionization time-of-flight analysis on Mass ARRAY mass spectrometry platform.Methods: We reviewed the related literature and data on lung cancer treatments. We also identified 99 mutation hot spots in 13 target genes closely related to the pathogenesis, drug resistance, and metastasis of lung cancer. A total of 297 primers, composed of99 paired forward and reverse amplification primers and 99 matched extension primers, were designed using Assay Design software. The detection method was established by analyzing eight cell lines and six lung cancer specimens. The proposed method was then validated through comparisons by using a Lung Carta^(TM) kit. The sensitivity and specificity of the proposed method were evaluated by directly sequencing EGFR and KRAS genes in 100 lung cancer cases.Results: The proposed method was able to detect multiplex genetic mutations in lung cancer cell lines. This finding was consistent with the observations on previously reported mutations. The proposed method can also detect such mutations in clinical lung cancer specimens. This result was consistent with the observations with Lung Carta^(TM) kit. However, an FGFR2 mutation was detected only through the proposed method. The measured sensitivity and specificity were 100% and 96.3%, respectively.Conclusions: The proposed Mass ARRAY technology-based multiplex method can detect genetic mutations in Chinese lung cancer patients. Therefore, the proposed method can be applied to detect mutations in other cancer tissues.展开更多
In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal...In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.展开更多
Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial d...Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.展开更多
This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary...This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary layer,LES approach has been used to simulate the flows over compression corners and incident shock waves,revealing that turbulent flows would significantly inhibit the boundary layer separation caused by shock wave-boundary layer interaction(SWBLI).The boundary layer transition over a circular cone has been analyzed through stability analysis and wind-tunnel test,by which the angle-of-attack effect in case of small angle of attack has been studied.Non-linear evolution process and secondary instability structure in the supersonic mixing layer(Mc=0.5) were initially figured out through the study of mixing layer,and knowledge of the flow control mechanism of the boundary layer and mixing enhancement mechanism of the mixing layer has been obtained through this research.Artificial boundary-layer transition technique based on subharmonic resonance has been proposed and applied to the flow control in a scramjet inlet,inhibiting the flow separation of the boundary layer while improving the inlet performance.To guarantee the mixing of kerosene and supersonic airflow in the scramjet combustor,the mixing enhancement method based on subharmonic resonance has been adopted and a concept of combustor with smooth wall and low internal drag has been proposed for ignition and stable combustion.Finally,future turbulence research and technological development of aerospace vehicles is predicted.展开更多
The application of actuator made of piezoelectric material,particularly the advanced piezoelectric fiber composite due to the rapid development of smart materials and structures and active control technology in aviati...The application of actuator made of piezoelectric material,particularly the advanced piezoelectric fiber composite due to the rapid development of smart materials and structures and active control technology in aviation and aerospace industry,to aircraft for performance enhancements such as flight control,aerodynamic force optimization,structure weight reduction,and overall aircraft design represents a new challenge to researches.It is considered as one of the key technologies for developing future flight vehicle.An approach with virtual control surface instead of conventional control surface to control aerodynamic force distribution and flight performance by use of piezoelectric fiber composite actuators distributed on wing surface is presented here.Particularly,the design and implementation of increasing lift force,providing roll maneuver,decreasing induced drag and wing root moment in different flight environments by the same structure control platform are studied.The control effect and sensitivity are examined quantitatively.Generally speaking,better control effect can be obtained by making better use of aeroelastic character to enlarge the actuation strain produced by piezoelectric material.展开更多
The recent development of automatically operating, inexpensive vertical-looking radar (VLR) for entomological purposes has made it practical to carry out routine, automated monitoring of insect aerial migration throug...The recent development of automatically operating, inexpensive vertical-looking radar (VLR) for entomological purposes has made it practical to carry out routine, automated monitoring of insect aerial migration throughout the year. In this paper we investigate whether such radars might have a role in monitoring and forecasting schemes designed to improve the management of the Brown Planthopper (BPH), Nilaparvata lugens, and of associated rice pest species in China. A survey of the literature revealed that these insects typically migrate at altitudes between 300 to 2 000 m above ground level, but calculations based on BPH radar scattering cross-sections indicated that the maximum altitude at which they individually produce signals analysable by current VLRs is only~240 m. We also show that coverage over most of the flight altitudes of BPH could be achieved by building a VLR using a wavelength of 8.8 mm instead of the 3.2 cm of existing VLR, but that such a radar would be expensive to build and to operate. We suggest that a more practical solution would be to use a 3.2 cm VLR as a monitor of the aerial movement of the larger species, from which the migration of rice pests in general might be inferred.展开更多
基金supported by the National Key Research and Development Program of China(No.2017YFB1300102)the National Natural Science Foundation of China(No.U1613227)。
文摘This paper introduces the Chinese"Dove"——A practical application system of bird-mimetic air vehicles developed for more than a decade by the Institute of Flight Vehicle Innovation of Northwest Polytechnic University(NWPU)in China.Firstly,the main components,flight capability and flight verification of the Chinese"Dove"are presented.Then,the methods for the aerodynamic simulation and wind tunnel experiments are put forward.Secondly,the design of high-lift and high-thrust flexible flapping wings,a series of flapping mechanisms,gust-resistance layout and micro flight control/navigation system are presented.Some future studies on the application system of bionic micro air vehicles are given,including observation of natural flight creatures,aerodynamics in flight,mechanical and new material driving systems,structural mechanics,flight mechanics,and the information perception and intelligent decision-making control,which are related to research of flight bioinformatic perception and brain science.Finally,some application examples of complex flapping movements,active/passive deformation of bird wings,new low-energy motion-driven system,bionic intelligent decision-making and control/navigation are discussed.
基金Research Fund from Science and Technology on Underwater Vehicle Laboratory
文摘The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
基金Project(20110018394) supported by Key Research Institute Program through the National Research Foundation (NRF) of Korea
文摘Similarity measure construction has been proposed as fault detection of flight test method in order to obtain the primary control surface stuck and the combination stuck of primary control.Similarity measures were obtained through analyzing the certainty and uncertainty of fuzzy membership functions,which were designed based on well-known Hamming distance.It was applied to the fault detection of primary control surface stuck of uninhabited aerial vehicle(UAV).At post-failure control surface,if the UAV is controllable and trimmable using other control surfaces,the UAV is able to fly or return to the safety region through reconfiguration of flight control system.To detect the fault,similarity measure computations were carried out.This result could be applicable with the real-time parameter estimation method.By monitoring the value of coefficients due to the control surface deviation,it becomes aware that the control surface fault occurs or not.The control surface stuck position and value were separated by comparing the trim value with the reference value.This is the advantage of increasing in reliability without adding sensors or with additional low cost.
基金supported by the Special Fund for Research in the Public Interest from the National Health and Family Planning Commission of PRC (Grant No. 201402031)the Key Lab System Project of the Guangdong Science and Technology Department (Grant No. 2012A061400006)the Special Fund for Research in the Public Interest and Capacity Building from the Guangdong Science and Technology Department (Grant No. 2014A020212225)
文摘Objective: This study aims to establish a method for highly parallel multiplexed detection of genetic mutations in Chinese lung cancer samples through Agena i PLEX chemistry and matrix-assisted laser desorption ionization time-of-flight analysis on Mass ARRAY mass spectrometry platform.Methods: We reviewed the related literature and data on lung cancer treatments. We also identified 99 mutation hot spots in 13 target genes closely related to the pathogenesis, drug resistance, and metastasis of lung cancer. A total of 297 primers, composed of99 paired forward and reverse amplification primers and 99 matched extension primers, were designed using Assay Design software. The detection method was established by analyzing eight cell lines and six lung cancer specimens. The proposed method was then validated through comparisons by using a Lung Carta^(TM) kit. The sensitivity and specificity of the proposed method were evaluated by directly sequencing EGFR and KRAS genes in 100 lung cancer cases.Results: The proposed method was able to detect multiplex genetic mutations in lung cancer cell lines. This finding was consistent with the observations on previously reported mutations. The proposed method can also detect such mutations in clinical lung cancer specimens. This result was consistent with the observations with Lung Carta^(TM) kit. However, an FGFR2 mutation was detected only through the proposed method. The measured sensitivity and specificity were 100% and 96.3%, respectively.Conclusions: The proposed Mass ARRAY technology-based multiplex method can detect genetic mutations in Chinese lung cancer patients. Therefore, the proposed method can be applied to detect mutations in other cancer tissues.
基金Project(51076062) supported by the National Natural Science Foundation of China
文摘In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.
基金Supported by Innovative Program of the Chinese Academy of Sciences (No. KGCY-SYW-407-02)Grand International Cooperation Foundation of Shanghai Science and Technology Commission (No. 052207046)
文摘Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.
文摘This paper focused on the fundamental and applied research of turbulent flows encountered in the hypersonic flight of aerospace vehicles,which take place in the boundary layer and mixing layer.As to the plate boundary layer,LES approach has been used to simulate the flows over compression corners and incident shock waves,revealing that turbulent flows would significantly inhibit the boundary layer separation caused by shock wave-boundary layer interaction(SWBLI).The boundary layer transition over a circular cone has been analyzed through stability analysis and wind-tunnel test,by which the angle-of-attack effect in case of small angle of attack has been studied.Non-linear evolution process and secondary instability structure in the supersonic mixing layer(Mc=0.5) were initially figured out through the study of mixing layer,and knowledge of the flow control mechanism of the boundary layer and mixing enhancement mechanism of the mixing layer has been obtained through this research.Artificial boundary-layer transition technique based on subharmonic resonance has been proposed and applied to the flow control in a scramjet inlet,inhibiting the flow separation of the boundary layer while improving the inlet performance.To guarantee the mixing of kerosene and supersonic airflow in the scramjet combustor,the mixing enhancement method based on subharmonic resonance has been adopted and a concept of combustor with smooth wall and low internal drag has been proposed for ignition and stable combustion.Finally,future turbulence research and technological development of aerospace vehicles is predicted.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-01-B05)the National Natural Science Foundation of China(Grant No.10772183)the Intellectual Innovation Project of the Chinese Academy of Sciences(Grant No.KJCX2-YW-L07)
文摘The application of actuator made of piezoelectric material,particularly the advanced piezoelectric fiber composite due to the rapid development of smart materials and structures and active control technology in aviation and aerospace industry,to aircraft for performance enhancements such as flight control,aerodynamic force optimization,structure weight reduction,and overall aircraft design represents a new challenge to researches.It is considered as one of the key technologies for developing future flight vehicle.An approach with virtual control surface instead of conventional control surface to control aerodynamic force distribution and flight performance by use of piezoelectric fiber composite actuators distributed on wing surface is presented here.Particularly,the design and implementation of increasing lift force,providing roll maneuver,decreasing induced drag and wing root moment in different flight environments by the same structure control platform are studied.The control effect and sensitivity are examined quantitatively.Generally speaking,better control effect can be obtained by making better use of aeroelastic character to enlarge the actuation strain produced by piezoelectric material.
文摘The recent development of automatically operating, inexpensive vertical-looking radar (VLR) for entomological purposes has made it practical to carry out routine, automated monitoring of insect aerial migration throughout the year. In this paper we investigate whether such radars might have a role in monitoring and forecasting schemes designed to improve the management of the Brown Planthopper (BPH), Nilaparvata lugens, and of associated rice pest species in China. A survey of the literature revealed that these insects typically migrate at altitudes between 300 to 2 000 m above ground level, but calculations based on BPH radar scattering cross-sections indicated that the maximum altitude at which they individually produce signals analysable by current VLRs is only~240 m. We also show that coverage over most of the flight altitudes of BPH could be achieved by building a VLR using a wavelength of 8.8 mm instead of the 3.2 cm of existing VLR, but that such a radar would be expensive to build and to operate. We suggest that a more practical solution would be to use a 3.2 cm VLR as a monitor of the aerial movement of the larger species, from which the migration of rice pests in general might be inferred.