引言随着全球化进程的推进,无人机(UAV,Unmanned Aerial Vehicles)作为现代战争"尖兵之翼"已在日益严峻的世界战争格局中崭露头角,其应用领域也开始多元化过渡发散。飞行控制系统(Flight Control System,简称FCS)作为无人机系统...引言随着全球化进程的推进,无人机(UAV,Unmanned Aerial Vehicles)作为现代战争"尖兵之翼"已在日益严峻的世界战争格局中崭露头角,其应用领域也开始多元化过渡发散。飞行控制系统(Flight Control System,简称FCS)作为无人机系统的"大脑",是执行无人机自主导航、飞行控制、任务管理的成败关键所在。展开更多
A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive ti...A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero.展开更多
In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupli...In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.展开更多
The controller design for hypersonic vehicle is critical and challenging because of the inherent couplings between the propulsion system and the airframe dynamics,as well as the presence of strong flexibility effects....The controller design for hypersonic vehicle is critical and challenging because of the inherent couplings between the propulsion system and the airframe dynamics,as well as the presence of strong flexibility effects.Many researchers have investigated various strategies to mitigate the coupling by means of robust design methods.This paper reviews the recent research efforts to promote the capability of control design for hypersonic vehicle.Methodologies such as robust control,adaptive control,sliding mode control and other hybrid methods have made significant progresses in hypersonic control.Then,the main challenges of control approaches for hypersonic vehicle are systematically analyzed in detail.展开更多
A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point ...A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point orbits was introduced and the coefficients of four Floquet periodic modes were proved to be nearly constant when the amplitude in z direction of earth-moon L1 halo orbits is less than 20000 km. On this basis, a configuration design approach to SFF in L1 halo orbits was proposed, and several types of special configurations were obtained with periodic mode 3 and mode 5 or mode 4 and mode 6. Then, in order to control the SFF configuration concisely, those coefficients of the 5 modes (except the stable one) must be kept constant. A stationkeeping method for SFF was developed, which controls 5 Floquet modes simultaneously. Finally, simulations showed that the Floquet-based approach of configuration design and control for SFF is effective, simple and convenient. The research may be of value for deep space explorations.展开更多
A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertai...A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertain parameters.The controller contains two subsystems,the inner-fast-loop nonlinear generable predictive controller(NGPC)and the outer-slow-loop NGPC,both of which are designed by the closed-form optimal generable predictive control method.Thus,the heavy on-line computational burden in the classical predictive control method is avoided.The hierarchy structure of the control system decreases the relative degree of each subsystem and helps increase the dynamic response speed of the attitude controller.In order to improve the robustness of the control system,a feedback correction algorithm is proposed that corrects the calculation error between the predictive model and the real dynamic model.Simulation studies are conducted for the trimmed cruise conditions of an altitude of 33.5 km and Mach 15 to investigate the responses of the vehicle to the step commands of angle of attack,sideslip angle,and bank angle.The simulation studies demonstrate that the proposed controller is robust with respect to the parametric uncertainties and atmospheric disturbance,and meets the performance requirements of GHV with acceptable control inputs.展开更多
The first Chinese Mars exploration will fulfill the goals of "orbiting, landing and roving" in one mission. This paper briefly describes the process of international Mars exploration and analyzes the development of ...The first Chinese Mars exploration will fulfill the goals of "orbiting, landing and roving" in one mission. This paper briefly describes the process of international Mars exploration and analyzes the development of Chinese Mars exploration. It focuses on introducing the scientific significance and engineering difficulties of Mars exploration, and provides an overview of the system design of the probe, including the flight profile, the preliminary selection of the landing site, the entry, descent and landing (also known as EDL) process. Four types of key technologies, including telecommunications, autonomous control, the EDL process, and its structure and mechanism, are detailed in this paper. Finally, the paper highlights the expected scientific and engineering results of the mission.展开更多
The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturban...The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.展开更多
Y98-61361-819 9908699离散多项式相位变换在无源声飞机飞行参数估计中的应用=The use of the DPT in passive acoustic aircraftflight parameter estimation[会,英]/Brcich,R.F.&Zoubir,A.M.//1997 IEEE Region 10 Annual Confer-...Y98-61361-819 9908699离散多项式相位变换在无源声飞机飞行参数估计中的应用=The use of the DPT in passive acoustic aircraftflight parameter estimation[会,英]/Brcich,R.F.&Zoubir,A.M.//1997 IEEE Region 10 Annual Confer-ence on Speech and Image Technologies for Computingand Telecommunicatioiis,Vol.2.—819~822(HG)展开更多
文摘引言随着全球化进程的推进,无人机(UAV,Unmanned Aerial Vehicles)作为现代战争"尖兵之翼"已在日益严峻的世界战争格局中崭露头角,其应用领域也开始多元化过渡发散。飞行控制系统(Flight Control System,简称FCS)作为无人机系统的"大脑",是执行无人机自主导航、飞行控制、任务管理的成败关键所在。
基金Projects(90916004,60804004)supported by the National Natural Science Foundation of ChinaProject supported by the Program for the New Century,ChinaProject(NCET-09-0590)supported by Excellent Talents in University,China
文摘A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero.
文摘In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61273054,60975072,60604009)the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)+1 种基金the Aeronautical Foundation of China (Grant No. 20115151019)the Open Fund of the State Key Laboratory of Virtual Reality Technology and Systems (Grant No. VR-2011-ZZ-01)
文摘The controller design for hypersonic vehicle is critical and challenging because of the inherent couplings between the propulsion system and the airframe dynamics,as well as the presence of strong flexibility effects.Many researchers have investigated various strategies to mitigate the coupling by means of robust design methods.This paper reviews the recent research efforts to promote the capability of control design for hypersonic vehicle.Methodologies such as robust control,adaptive control,sliding mode control and other hybrid methods have made significant progresses in hypersonic control.Then,the main challenges of control approaches for hypersonic vehicle are systematically analyzed in detail.
基金supported by the National Natural Science Foundation of China (Grant No. 10702078)the National University of Defense Technology Research Program (Grant No. JC08-01-05)
文摘A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point orbits was introduced and the coefficients of four Floquet periodic modes were proved to be nearly constant when the amplitude in z direction of earth-moon L1 halo orbits is less than 20000 km. On this basis, a configuration design approach to SFF in L1 halo orbits was proposed, and several types of special configurations were obtained with periodic mode 3 and mode 5 or mode 4 and mode 6. Then, in order to control the SFF configuration concisely, those coefficients of the 5 modes (except the stable one) must be kept constant. A stationkeeping method for SFF was developed, which controls 5 Floquet modes simultaneously. Finally, simulations showed that the Floquet-based approach of configuration design and control for SFF is effective, simple and convenient. The research may be of value for deep space explorations.
文摘A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertain parameters.The controller contains two subsystems,the inner-fast-loop nonlinear generable predictive controller(NGPC)and the outer-slow-loop NGPC,both of which are designed by the closed-form optimal generable predictive control method.Thus,the heavy on-line computational burden in the classical predictive control method is avoided.The hierarchy structure of the control system decreases the relative degree of each subsystem and helps increase the dynamic response speed of the attitude controller.In order to improve the robustness of the control system,a feedback correction algorithm is proposed that corrects the calculation error between the predictive model and the real dynamic model.Simulation studies are conducted for the trimmed cruise conditions of an altitude of 33.5 km and Mach 15 to investigate the responses of the vehicle to the step commands of angle of attack,sideslip angle,and bank angle.The simulation studies demonstrate that the proposed controller is robust with respect to the parametric uncertainties and atmospheric disturbance,and meets the performance requirements of GHV with acceptable control inputs.
文摘The first Chinese Mars exploration will fulfill the goals of "orbiting, landing and roving" in one mission. This paper briefly describes the process of international Mars exploration and analyzes the development of Chinese Mars exploration. It focuses on introducing the scientific significance and engineering difficulties of Mars exploration, and provides an overview of the system design of the probe, including the flight profile, the preliminary selection of the landing site, the entry, descent and landing (also known as EDL) process. Four types of key technologies, including telecommunications, autonomous control, the EDL process, and its structure and mechanism, are detailed in this paper. Finally, the paper highlights the expected scientific and engineering results of the mission.
文摘The design of an L_1 adaptive controller for hypersonic formation flight is presented. The traditional leader/wingman formation control problem is considered, with focused attention on dealing with the input disturbance and parametric variations, both of which are intrinsic properties of the system that result in undesired control performance. A proportional-derivative control scheme based on nonlinear dynamic inversion is implemented as the baseline controller, and an L_1 adaptive controller is augmented to the baseline controller to attenuate the effects of input disturbance and parametric variations. Simulation results illustrate the effectiveness of the proposed control scheme.
文摘Y98-61361-819 9908699离散多项式相位变换在无源声飞机飞行参数估计中的应用=The use of the DPT in passive acoustic aircraftflight parameter estimation[会,英]/Brcich,R.F.&Zoubir,A.M.//1997 IEEE Region 10 Annual Confer-ence on Speech and Image Technologies for Computingand Telecommunicatioiis,Vol.2.—819~822(HG)