碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎...碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。展开更多
Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection...Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.展开更多
文摘碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5为最佳阈值;而国标法的AUC值为0.922,KS值为0.669,21为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1分数均高于国标法。此外,逻辑回归模型的AUC值比国标法的AUC值更接近于1,KS值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x_(1))、面积(x_(2))、短轴(x_(3))与长短轴比(x_(4))4个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x_(1)+10.93x_(2)+2.86x_(3)+34.59x_(4)。
文摘Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.