Through experimental analysis of the liquid flows in a flow channel instrument, prompt evaluation of the physically defined viscosity of non-Newtonian liquid foods was investigated for development into a structurally ...Through experimental analysis of the liquid flows in a flow channel instrument, prompt evaluation of the physically defined viscosity of non-Newtonian liquid foods was investigated for development into a structurally simple and easy-to-use viscometer. For Newtonian and non-Newtonian test liquids, a relation between the friction coefficient and Reynolds number, which was dimensionless as derived from an expression of analysis as a gravity current, indicated a condition under which the flow in the instrument was laminar and under which an average shear rate was on the order of less than 1 s~. Prediction organized based on this empirical relation reproduced practically the flow curve determined for the liquid foods using a rotor type viscometer. Utilization of the channel instrument as a viscometer was formulated in terms of physical meanings of measurements such as the flow length and elapsed time.展开更多
文摘Through experimental analysis of the liquid flows in a flow channel instrument, prompt evaluation of the physically defined viscosity of non-Newtonian liquid foods was investigated for development into a structurally simple and easy-to-use viscometer. For Newtonian and non-Newtonian test liquids, a relation between the friction coefficient and Reynolds number, which was dimensionless as derived from an expression of analysis as a gravity current, indicated a condition under which the flow in the instrument was laminar and under which an average shear rate was on the order of less than 1 s~. Prediction organized based on this empirical relation reproduced practically the flow curve determined for the liquid foods using a rotor type viscometer. Utilization of the channel instrument as a viscometer was formulated in terms of physical meanings of measurements such as the flow length and elapsed time.