为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列...为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。展开更多
文摘为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。