随着中国人口自然增长率下降,人口老龄化已成为严峻的社会问题,其中高龄空巢独居老人的养老更是困难重重,养老问题的根本在于如何解决老年人的温饱。与此同时,超市、快餐店等剩余食物浪费现象严重,国内缺少相应的食物回收机构。所以我...随着中国人口自然增长率下降,人口老龄化已成为严峻的社会问题,其中高龄空巢独居老人的养老更是困难重重,养老问题的根本在于如何解决老年人的温饱。与此同时,超市、快餐店等剩余食物浪费现象严重,国内缺少相应的食物回收机构。所以我们提出了“食物回收 + 养老援助”模式,希望通过这种方式改善高龄独居空巢老人的吃饭问题。With the decline of China’s natural population growth rate, population aging has become a serious social problem, among which the elderly empty nest living alone elderly is more difficult to support the elderly, and the fundamental problem of the pension is how to solve the elderly food and clothing. At the same time, supermarkets, fast food and other surplus food waste phenomenon are serious, and there is the lack of the corresponding food recycling institutions. Therefore, we pro-posed the mode of “food recovery + endowment assistance”, hoping to improve the feeding problem of elderly empty nesters living alone by this way.展开更多
Approximately one quarter of the global edible food supply is wasted. The drivers of food waste can occur at any level between production, harvest, distribution, processing, and the consumer. While the drivers vary gl...Approximately one quarter of the global edible food supply is wasted. The drivers of food waste can occur at any level between production, harvest, distribution, processing, and the consumer. While the drivers vary globally, the industrialized regions of North America, Europe, and Asia share similar situations; in each of these regions the largest loss of food waste occurs with the consumer, at approximately 51% of total waste generated. As a consequence, handling waste falls on municipal solid waste operations. In the United States, food waste constitutes 15% of the solid waste stream by weight, contributes 3.4 -107 t of carbon dioxide (CO2) equivalent emissions, and costs 1.9 billion USD in disposal fees. The levels of carbon, nutrients, and moisture in food waste make bioprocessing into higher value products an attractive method for mitigation. Opportunities include extraction of nutraceuticals and bioactive compounds, or conversion to a variety of volatile acids-including lactic, acetic, and propionic acids-that can be recovered and sold at a profit. The conversion of waste into volatile acids can be paired with bioen- ergy production, including hydrogen or biogas. This present review compares the potential for upgrading industrial food waste to either specialty products or methane. Higher value uses of industrial food waste could alleviate approximately 1.9-108 t of CO2 equivalent emissions. As an example, potato peel could be upgraded to lactic acid via fermentation to recover 5600 million USD per year, or could be converted to methane via anaerobic digestion, resulting in a revenue of 900 million USD per year. The potential value to be recovered is significant, and food-waste valorization will help to close the loop for various food industries.展开更多
Twenty two fresh water fish samples namely Puntius sarana (Shawrputi), Cyprinus carpio (Karp), Oreochromis niloticos (Telapia), Channa punctatus (Taki), Wallogonia attu (Boal), Eutropiichthys vacha (Bacha)...Twenty two fresh water fish samples namely Puntius sarana (Shawrputi), Cyprinus carpio (Karp), Oreochromis niloticos (Telapia), Channa punctatus (Taki), Wallogonia attu (Boal), Eutropiichthys vacha (Bacha), Macrognathus aculiatus (Baim), Ailia coila (Kajoli), Mystus cavasisus(Gulsa), Ompok pabda (Pabdha), Corica soborna (Kachki), Mystus vittatus (Tengra), Glossogobius giuris (Baila), Macrobrachium malcolmsli (Chingri), Amblypharyngodon microlepis (Mola), Anabas testudineus (Koi), Macrognathus aculiatus (Baim), Channa striatus (Shole), Heteropnueste fossilis (Shing), Puntius sophore (Small Puti) and Pseudambassis ranga (Telapia) were collected from two rivers and one cultured fish pond. The samples were extracted by QuEChERS method, cleaned up with conc. H2SO4 treatment and cleaned extracts were analyzed by GC-ECD. Small size cultured rui fish sample which did show detectable amount of DDT and its metabohtes was used for the recovery experiments. Percent recovery was found to be in the range of 70%-113%. Amount of total DDTs were found to be 54.34, 48.81, 62.09, 54.72,78.81, 60.07, 47.0, 42.7, 26.31, 10.36, 25.32, 12.96, 20.10, 12.78, 17.65, and 4.71, 8.58, 11.3 and 19.01 ng/g in gulsa, pabhda, baila, bacha, baim, small purl, tengra, chanda, kachki, boal, taki, chingri, mola, shole, shing, koi, swarpurl, karp and telapia fish samples, respectively. However, the residual amounts of DDTs in all the fish samples were below maximum residue limit (MRL of DDTs in fish 5.0 mg/kg) according to Codex Alimentarius Commission. The ratios of 4,4'-DDT/DDTs were in the range of 0.03-0.44 which indicated that exposure to DDT is not due to recent use.展开更多
文摘随着中国人口自然增长率下降,人口老龄化已成为严峻的社会问题,其中高龄空巢独居老人的养老更是困难重重,养老问题的根本在于如何解决老年人的温饱。与此同时,超市、快餐店等剩余食物浪费现象严重,国内缺少相应的食物回收机构。所以我们提出了“食物回收 + 养老援助”模式,希望通过这种方式改善高龄独居空巢老人的吃饭问题。With the decline of China’s natural population growth rate, population aging has become a serious social problem, among which the elderly empty nest living alone elderly is more difficult to support the elderly, and the fundamental problem of the pension is how to solve the elderly food and clothing. At the same time, supermarkets, fast food and other surplus food waste phenomenon are serious, and there is the lack of the corresponding food recycling institutions. Therefore, we pro-posed the mode of “food recovery + endowment assistance”, hoping to improve the feeding problem of elderly empty nesters living alone by this way.
基金supported by Hatch Fund (IND010677)the Department of Agricultural and Biological Engineering at Purdue University
文摘Approximately one quarter of the global edible food supply is wasted. The drivers of food waste can occur at any level between production, harvest, distribution, processing, and the consumer. While the drivers vary globally, the industrialized regions of North America, Europe, and Asia share similar situations; in each of these regions the largest loss of food waste occurs with the consumer, at approximately 51% of total waste generated. As a consequence, handling waste falls on municipal solid waste operations. In the United States, food waste constitutes 15% of the solid waste stream by weight, contributes 3.4 -107 t of carbon dioxide (CO2) equivalent emissions, and costs 1.9 billion USD in disposal fees. The levels of carbon, nutrients, and moisture in food waste make bioprocessing into higher value products an attractive method for mitigation. Opportunities include extraction of nutraceuticals and bioactive compounds, or conversion to a variety of volatile acids-including lactic, acetic, and propionic acids-that can be recovered and sold at a profit. The conversion of waste into volatile acids can be paired with bioen- ergy production, including hydrogen or biogas. This present review compares the potential for upgrading industrial food waste to either specialty products or methane. Higher value uses of industrial food waste could alleviate approximately 1.9-108 t of CO2 equivalent emissions. As an example, potato peel could be upgraded to lactic acid via fermentation to recover 5600 million USD per year, or could be converted to methane via anaerobic digestion, resulting in a revenue of 900 million USD per year. The potential value to be recovered is significant, and food-waste valorization will help to close the loop for various food industries.
文摘Twenty two fresh water fish samples namely Puntius sarana (Shawrputi), Cyprinus carpio (Karp), Oreochromis niloticos (Telapia), Channa punctatus (Taki), Wallogonia attu (Boal), Eutropiichthys vacha (Bacha), Macrognathus aculiatus (Baim), Ailia coila (Kajoli), Mystus cavasisus(Gulsa), Ompok pabda (Pabdha), Corica soborna (Kachki), Mystus vittatus (Tengra), Glossogobius giuris (Baila), Macrobrachium malcolmsli (Chingri), Amblypharyngodon microlepis (Mola), Anabas testudineus (Koi), Macrognathus aculiatus (Baim), Channa striatus (Shole), Heteropnueste fossilis (Shing), Puntius sophore (Small Puti) and Pseudambassis ranga (Telapia) were collected from two rivers and one cultured fish pond. The samples were extracted by QuEChERS method, cleaned up with conc. H2SO4 treatment and cleaned extracts were analyzed by GC-ECD. Small size cultured rui fish sample which did show detectable amount of DDT and its metabohtes was used for the recovery experiments. Percent recovery was found to be in the range of 70%-113%. Amount of total DDTs were found to be 54.34, 48.81, 62.09, 54.72,78.81, 60.07, 47.0, 42.7, 26.31, 10.36, 25.32, 12.96, 20.10, 12.78, 17.65, and 4.71, 8.58, 11.3 and 19.01 ng/g in gulsa, pabhda, baila, bacha, baim, small purl, tengra, chanda, kachki, boal, taki, chingri, mola, shole, shing, koi, swarpurl, karp and telapia fish samples, respectively. However, the residual amounts of DDTs in all the fish samples were below maximum residue limit (MRL of DDTs in fish 5.0 mg/kg) according to Codex Alimentarius Commission. The ratios of 4,4'-DDT/DDTs were in the range of 0.03-0.44 which indicated that exposure to DDT is not due to recent use.