Sitosterolemia (MIM 210250) is a rare genetic disorder caused by disruption of the normal mechanisms that regulate dietary cholesterol Absorption and prevent the accumulation of noncholesterol sterols. As a result of ...Sitosterolemia (MIM 210250) is a rare genetic disorder caused by disruption of the normal mechanisms that regulate dietary cholesterol Absorption and prevent the accumulation of noncholesterol sterols. As a result of this defect, affected individuals accumulate high concentrations of plant sterols in plasma and tissues. They present clinically with tendon or tuberoeruptive xanthomas, premature coronary artery disease, and/or hemolytic anemia. Two genes, ABCG5 and ABCG8, compose the STSL locus, and complete mutation in either, but not both, results in disease. The expression of these genes is confined to the intestine and liver. They are thought to function as sterol efflux pumps. It is not clear which organ, liver or intestine, is of greater importance in maintaining sterol balance with respect to noncholesterol sterols. We report here a case of a patient who presented with “ chronic active liver disease" and was found to have sitosterolemia by chance and subsequently underwent orthotopic liver transplantation. Following transplantation, the grossly elevated pretransplantation serum plant sterol levels decreased to values only slightly higher than those of the patient’s heterozygous father. This case highlights 2 important features: (1) The liver functions as the predominant organ for maintaining noncholesterol sterol balance (because the intestinal defect was not altered), and (2) a new clinical feature of undiagnosed sitosterolemia may be “ idiopathic" liver disease. Because the diagnosis of sitosterolemia is based on specialized plasma analyses, we would propose that some consideration to this diagnosis should be given in appropriate cases.展开更多
AIM: To assess the effects of soy protein, isoflavone, and saponin on liver and blood lipid in rats that consumed high-cholesterol diets.METHODS: High-cholesterol diets (1%) with or without soy material were fed to 6-...AIM: To assess the effects of soy protein, isoflavone, and saponin on liver and blood lipid in rats that consumed high-cholesterol diets.METHODS: High-cholesterol diets (1%) with or without soy material were fed to 6-wk-old male Sprague-Dawley rats for 8 wk. Blood lipids, liver lipids, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) levels were measured. The in vitro bile acid-binding ability of soy materials was analyzed.RESULTS: The results of in vitro studies showed that soy protein isolate had a significantly higher bile acid-binding ability (8.4±0.8%) than soy saponin (3.1±0.7%) and isoflavone (1.3±0.4%, P<0.05). On the other hand, at the end of the experimental period, rats that consumed soy protein diets had lower GOT and GPT levels than rats that consumed casein under high-cholesterol diets.Rats that consumed soy protein also had lower total cholesterol (TC) levels in the liver than those that consumed casein under high-cholesterol diets. Rats that consumed the soy protein diet containing both saponin and isoflavone had lower hepatic TC level than those that consumed the soy protein diet without isoflavone alone.The effect of different types of proteins on triglyceride was not significant.CONCLUSION: Consumption of soy provided benefits to control lipid levels under high-cholesterol dieting conditions in this rat model of hypercholesterolemia. The major component that reduced hepatic TC was not saponin, but possibly isoflavone.展开更多
文摘Sitosterolemia (MIM 210250) is a rare genetic disorder caused by disruption of the normal mechanisms that regulate dietary cholesterol Absorption and prevent the accumulation of noncholesterol sterols. As a result of this defect, affected individuals accumulate high concentrations of plant sterols in plasma and tissues. They present clinically with tendon or tuberoeruptive xanthomas, premature coronary artery disease, and/or hemolytic anemia. Two genes, ABCG5 and ABCG8, compose the STSL locus, and complete mutation in either, but not both, results in disease. The expression of these genes is confined to the intestine and liver. They are thought to function as sterol efflux pumps. It is not clear which organ, liver or intestine, is of greater importance in maintaining sterol balance with respect to noncholesterol sterols. We report here a case of a patient who presented with “ chronic active liver disease" and was found to have sitosterolemia by chance and subsequently underwent orthotopic liver transplantation. Following transplantation, the grossly elevated pretransplantation serum plant sterol levels decreased to values only slightly higher than those of the patient’s heterozygous father. This case highlights 2 important features: (1) The liver functions as the predominant organ for maintaining noncholesterol sterol balance (because the intestinal defect was not altered), and (2) a new clinical feature of undiagnosed sitosterolemia may be “ idiopathic" liver disease. Because the diagnosis of sitosterolemia is based on specialized plasma analyses, we would propose that some consideration to this diagnosis should be given in appropriate cases.
文摘AIM: To assess the effects of soy protein, isoflavone, and saponin on liver and blood lipid in rats that consumed high-cholesterol diets.METHODS: High-cholesterol diets (1%) with or without soy material were fed to 6-wk-old male Sprague-Dawley rats for 8 wk. Blood lipids, liver lipids, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) levels were measured. The in vitro bile acid-binding ability of soy materials was analyzed.RESULTS: The results of in vitro studies showed that soy protein isolate had a significantly higher bile acid-binding ability (8.4±0.8%) than soy saponin (3.1±0.7%) and isoflavone (1.3±0.4%, P<0.05). On the other hand, at the end of the experimental period, rats that consumed soy protein diets had lower GOT and GPT levels than rats that consumed casein under high-cholesterol diets.Rats that consumed soy protein also had lower total cholesterol (TC) levels in the liver than those that consumed casein under high-cholesterol diets. Rats that consumed the soy protein diet containing both saponin and isoflavone had lower hepatic TC level than those that consumed the soy protein diet without isoflavone alone.The effect of different types of proteins on triglyceride was not significant.CONCLUSION: Consumption of soy provided benefits to control lipid levels under high-cholesterol dieting conditions in this rat model of hypercholesterolemia. The major component that reduced hepatic TC was not saponin, but possibly isoflavone.